Download: pdf (7 pages; 72 Kb)
Abstract: According to Bowers (2009), the finding that there are neurons with highly selective responses to familiar stimuli supports theories positing localist representations over approaches positing the type of distributed representations typically found in parallel distributed processing (PDP) models. However, his conclusions derive from an overly narrow view of the range of possible distributed representations and of the role that PDP models can play in exploring their properties. Although it is true that current distributed theories face challenges in accounting for both neural and behavioral data, the proposed localist account---to the extent that it is articulated at all---runs into more fundamental difficulties. Central to these difficulties is the problem of specifying the set of entities a localist unit represents.
Copyright Notice: The documents distributed here have been provided as a means to ensure timely dissemination of scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.