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Abstract 
 
Short-term memory for serial order, like other domains of memory, is subject to constructive effects.  In 
particular, background knowledge concerning regularities in sequential structure can affect serial recall.  
A clear example of this is the bigram frequency effect, whereby letter strings conforming to the transitional 
probabilities of English are better recalled than random strings.  Such effects present difficulty for most 
current models of immediate serial recall, which rely on associations between individual items and context 
representations.  At the same time, approaches that have proven effective in modeling sequence 
processing in other contexts, such as recurrent neural networks, have been viewed as inapplicable to 
short-term serial memory, since they are thought to depend fundamentally on inter-item associations or 
chaining.   We present a recurrent neural network model of immediate serial recall that overcomes this 
apparent dilemma.  The model is used to simulate data from Baddeley (1968) that are widely agreed to 
rule out chaining models.  The model is then applied to the bigram frequency effect, as reported in 
Baddeley (1964) and Kantowitz, Ornstein and Schwartz (1972).  The simulation results dispel the notion 
that recurrent neural networks are simply chaining models, and provide what appears to be the only 
available computational account of the bigram frequency effect. 
 
 
 

Introduction 
 
At least since the famous work of Bartlett (1932), it has been clear that constructive processes play an 
important role in memory.  What we remember is determined not only by the material presented, but also 
by how that material fits with our background knowledge.  Of course, this principle applies across a wide 
variety of domains and time-scales.   In the present paper, we focus on the particular question of how 
constructive processes may operate in short-term memory for serial order. 
 
While the issue of sequential structure plays a role in many studies of constructive memory, there are 
relatively few studies that have focused specifically on the topic.  One of the earliest is a study by Miller 
and Selfridge (1951).  This reported that immediate recall of word lists was positively related to how well 
those lists approximated the word-to-word transition probabilities of English.  Subsequently, studies by 
Baddeley (1964, 1965), Mayzner and Schoenberg (1965), and Kantowitz, Ornstein and Schwartz (1972)  
demonstrated an analogous effect for lists of English letters.   Here, recall was better for letter strings that 
mirrored the bigram frequency structure of English — i.e., the frequencies with which specific pairs of 
letters adjoin in English text — than for strings that conserved only the frequencies of individual letters 
(see Figures 3 and 4).   In these studies, as in other instances of constructive memory, we find recall 
affected by domain-specific background knowledge, here, knowledge concerning the transition 
probabilities among sequentially-organized items.       
 
Despite their interest, such findings have typically been marginalized, if not ignored, in recent work on 
immediate serial recall.   A review of such work suggests a possible reason for this neglect, which is that 
constructive memory effects are problematic for currently popular theories of serial recall.   A majority of 
recent models are based on the idea that short-term memory for serial order depends on temporary, 
rapidly formed links between individual item representations and representations of position or temporal 
context (e.g., Brown, Preece, & Hulme, 2000; Burgess & Hitch, 1999; Henson, 1998; Houghton, 1990).    
Such a mechanism is insensitive to the presence of consistent serial structure across items, both 
because the associations it involves are transient, and because — for reasons we shall discuss in a 
moment — the mechanism eschews item-to-item associations.  As a result, short of importing additional 
ad hoc mechanisms (e.g., Hartley & Houghton, 1996), current models are unable to address such 
constructive phenomena as the bigram frequency effect.   As Henson (1998) directly states, such 
"interactions between short- and long-term memory pose problems for most models of serial recall" (p. 
115).   
 
A more effective approach to understanding short-term memory for serial order is suggested by network 
models emerging from neuroanatomical and neurophysiologic research (e.g., Beiser & Houk, 1998; 
Dominey, Arbib & Joseph, 1995; O'Reilly & Soto, 2002).   According to these accounts, serial order 
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memory arises not from temporary, weight-based associations between item and context representations, 
but instead from the sustained activation of  processing units conjointly representing item and order 
information.  A key element of this general account is the presence of recurrent or feedback connectivity 
that supports the preservation and integration of serial order information by allowing activation to circulate 
over feedback loops.     
 
One factor that makes current neuroscience-based models appealing, from the point of view of 
constructive memory phenomena, is that they closely resemble recurrent neural network models that 
have been proposed in the psychological literature to account for numerous aspects of sequence 
processing.  Recurrent networks have been successfully applied to sequence parsing  (e.g., Elman, 
1990), sequential prediction (e.g., Cleeremans, 1993), and sequence production (e.g., Botvinick & Plaut, 
submitted), to mention only a few examples.  Such studies suggest that recurrent networks, unlike the 
context-association models often applied to immediate serial recall, are well suited to tasks where it is 
important to encode domain-specific regularities in sequential structure. 
 
Despite this strength of recurrent networks, and despite their popularity among neuroscientifically minded 
theorists, recurrent networks have never been applied, in any detailed way, to behavioral data relating to 
short-term serial order memory.   Indeed, many modelers in the field have expressed doubt that such an 
undertaking would be worthwhile.  This is because recurrent networks are widely viewed as chaining 
models, that is, models based on inter-item associations.   While chaining was considered to be a 
possible basis for serial memory in early work (e.g., Wickelgren, 1966), this has essentially been ruled out 
by subsequent empirical findings.   Perhaps the most compelling data are those reported by Baddeley 
(1968; see also Henson, 1998).  Baddeley studied memory for lists containing both acoustically 
confusable and non-confusable letters.   A chaining account would predict that non-confusable letters 
positioned after confusable letters should be recalled less accurately than the same letters appearing in 
lists made up only of non-confusable items.  The data contradicted this prediction:  Non-confusable items 
were recalled just as accurately when they followed confusable items as when they did not (see Figure 2, 
left).     
 
From the point of view of constructive memory, the discussion so far leaves us with an apparent paradox.   
The empirical data rule out item-to-item associations — chaining — as a mechanism for serial recall, and, 
as a result, current psychological theories avoid mechanisms involving such associations (including 
recurrent neural networks).   However, without a mechanism for encoding the relationships among items, 
it seems impossible to account for constructive phenomena such as the bigram frequency effect.  To 
pose the challenge concretely: It is unclear how a single mechanism could give rise both to the bigram 
frequency effect and to the pattern of behavior observed by Baddeley (1968). 
 
We present here a computational model of immediate serial recall that does account for both of these 
phenomena.  The model takes the form of a recurrent neural network, essentially identical in structure to 
networks that have been applied to other aspects of sequence processing (e.g., Botvinick & Plaut, 
submitted; Cleeremans, 1993; Elman, 1990).   Elsewhere, we report simulations applying the model to a 
wide range of behavioral data in the domain of immediate serial recall (Botvinick & Plaut, in preparation).   
Here, we focus specifically on two empirical benchmarks:  the findings of Baddeley (1968), and the 
bigram frequency effect, as reported by Baddeley (1964) and Kantowitz, et al. (1972).    Our simulation 
results point to two basic conclusions:  1) Recurrent neural networks should not be regarded simply as 
chaining models; 2) Although recurrent networks need not chain, they are nonetheless sensitive to serial 
structure, allowing them to provide an account of immediate serial recall that extends to constructive 
phenomena, including the bigram frequency effect.   
 
 

The model 
 
Our model is based on the connectionist or parallel distributed processing framework (Rumelhart & 
McClelland, 1986), and implements the now well-known simple recurrent network architecture of Elman 
(1990).  The network is made up of simple processing units, organized into three groups or layers (Figure 
1).    An input group sends connections to an internal or hidden group of 200 units, which in turns feeds 
into an output group.  Recurrent connections (associated with a conduction delay of one time-step) are 



Bovinick and Plaut                                         Constructive processes in serial recall 
  

3 

included from the output group to the internal group, and among the units within the internal group.   
These recurrent connections allow the network's state on each time-step to influence its state on the 
subsequent step.   Further details of the achitecture are provided below, and in a separate article 
(Botvinick & Plaut, in preparation).   
 
The model was used to simulate the task of immediate serial recall.   Item presentation was simulated by 
activating input units corresponding to specific items (details below).  During this phase, the network's 
task was to "shadow" the input, by activating the identical units in the output layer.   Following 
presentation of the last list item, a special unit in the input layer was activated to serve as a recall cue.  
Beginning on this time-step, the model's task was to activate output units corresponding to the items in 
the presented list, one per time-step, and in the original order.  The model was trained to perform the task 
using a version of the backpropagation learning algorithm, adapted to the simple recurrent network 
architecture (Rumelhart, Durbin, Golden & Chauvin, 1996).     During training, lists of variable length were 
presented, ranging from 1 to 6 items for Simulation 1 and from 1 to 9 items for Simulation 2.  Steepest 
descent learning was employed, with a learning rate of 0.001. Training continued until performance 
reached accuracy levels roughly approximating those for benchmark empirical data.  It should be noted 
that length of training was the only free parameter involved in the simulations.   Following training, model 
performance was evaluated by holding connection weights constant, and presenting further lists 
simulating task conditions from relevant studies (as detailed below).     

 
Figure 1.  Schematic of the simulation model.  Arrows represent full projections, 
containing connections from every unit in the sending layer to every unit in the receiving 
layer.   

 
 
A brief note is warranted concerning the training procedure.  It is, of course, not our view that the ability to 
perform immediate serial recall is based on explicit training specifically on this task.  Instead, we suggest 
that the relevant processing mechanisms develop through experience with a wide variety of tasks — most 
notably language use —  that demand the integration of information over time, and the subsequent 
production of ordered sequential responses.   In addition, neurodevelopmental processes that are 
independent of experience may contribute to establishing at least the rudiments of these mechanisms 
(see Beiser & Houk, 1998).  Our approach to training in the present simulations is thus, to some extent, a 
computational convenience, allowing us to bypass the simulation of much more diverse and long-term 
developmental processes.  
 
All simulations were conducted using the LENS neural network simulator  (Rhode, 1999).   
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Simulations 
 
We present here the results of two simulations.   In the first, the model was applied to the experimental 
paradigm of Baddeley (1968).  This simulation functioned as a test of the claim that recurrent networks 
necessarily function through chaining,  a claim that, if true, would rule out recurrent networks as models of 
serial recall.  The second simulation evaluated the effect of domain structure on serial recall, by 
simulating two studies of the bigram frequency effect (Baddeley, 1964 and Kantowitz et al., 1972).    
 
Simulation 1:  Testing the chaining claim 
 
Methods.  A key aspect of Baddeley's (1968) study was that it involved both confusable and non-
confusable items.  In order to simulate the experiment, it was thus necessary to use item representations 
that involved some similarity structure.   This was accomplished by representing items using a two-
dimensional code.  Each item was represented by one unit from each of two sub-groups within the input 
(and output) layers, containing 6 and 36 units respectively.  The units in these two groups were used, 
collectively, to represent 36 items.  Each item included a unique unit from the 36-unit group and one unit 
from the 6-unit group.   Each unit in the smaller group featured in a total of 6 items.    Items sharing a unit 
from this group were considered to be confusable, given their representational overlap. Items involving 
different units from the 6-unit group were considered non-confusable.   Items were represented identically 
in input and output layers.   
 
The model was trained on randomly structured (but non-repeating) lists for a total of  202,000 lists of each 
length.   It should be noted that over 1.4 billion different lists of length 6 could be constructed from the 36 
input items.  Thus, training exposed the network to well under 1/6000 of  potential target lists.    At test, 
the model was presented with four types of 6-item list:  pure non-confusable (PN) lists, involving only non-
overlapping items; pure confusable (PC) list, involving items all of which were mutually overlapping; lists 
in which items 1, 3, and 5 were mutually confusable (AC, for alternating/confusable); and lists in which 
items 2, 4, and 6 were confusable (AN, for alternating/non-confusable).   During testing, responses were 
gathered by identifying the item representation most closely resembling the pattern of activation in the 
output layer, with equal weighting given to the two dimensions used in representing items.   
 
Results.  Following Baddeley (1968), performance was evaluated by calculating the proportion of trials on 
which items at each position were recalled incorrectly.   Results are diagramed in Figure 2 (right).   As in 
Baddeley (1968),  non-confusable items were recalled more accurately than confusable items, leading to 
better performance on PN than PC lists, and a "sawtooth" pattern for AC and AN lists.  As in many studies 
of serial recall, a pronounced primacy effect, and a smaller recency effect, were also evident.     The 
critical finding, however, was that, as in Baddeley (1968), accuracy for non-confusable items in AC and 
AN lists was virtually identical to that for items in the corresponding positions in PN lists.   
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Figure 2.  Error rates, by serial position, for lists including confusable and/or non-
confusable items.   Left:  Empirical data, estimated from Figure 4 of Baddeley (1968).  
Right: Simulation results, based on a sample of 5000 trials.   PC = pure confusable, PN = 
pure non-confusable, AC = alternating, first item confusable, AN = alternating, first item 
non-confusable.    

 
 
Discussion.  There is a widely held view (e.g., Brown, Preece & Hulme, 2000;  Henson, 1998; Houghton, 
1990), that recurrent networks cannot be considered as candidate models of immediate serial recall, 
because such networks function through inter-item chaining.   This simulation put that claim to the test, by 
using a recurrent network to simulate the experiment of Baddeley (1968), a study whose results are 
widely acknowledged to be incompatible with chaining accounts.  The model captured the key aspects of 
the empirical data rather precisely.  We conclude from this that the claim that recurrent networks must 
operate through chaining can be set aside.   
 
Simulation 2 : Effects of domain structure on serial recall  
 
Having shown, in Simulation 1, that the present model does not function simply through item-to-item 
chaining, the question arises:  Is the network nonetheless sensitive to consistent item-to-item transition 
probabilities?   If trained in a domain involving serial structure, would the model's recall performance be 
influenced by the degree of  fit between target lists and the domain's sequencing constraints?   In human 
behavior, this phenomenon is evident in the bigram frequency effect.  We asked whether the model, if 
trained on letter strings reflecting the transition probabilities of English, would display the bigram 
frequency effect, as reported by Baddeley (1964) and Kantowitz et al. (1972).   
 
Methods.  For this simulation, input items were represented using single units, one for each letter of the 
alphabet.    Training lists were constructed based on letter-to-letter transition probabilities, computed 
based on a large corpus of text from the Wall Street Journal (see Marcus, Santorini, & Marcinkiewicz, 
1993).     Two full training runs were conducted.   During the first, lists involving all letters of the alphabet 
were permitted.   For this simulation, testing involved 8-item lists that reflected the transition probabilities 
used during training ("first-order" lists), and, for comparison, lists that were randomly sequenced, 
preserving only the frequencies of occurrence of individual letters ("zero-order" lists).   Results from this 
simulation were compared with data from Baddeley (1964).  The second simulation run was intended to 
simulate Kantowitz et al. (1972).  In that study, subjects were presented with 9-item lists always involving 
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the same 9 consonants (in varying permutations), and performance was compared between a subset of 
the lists that contained high-probability letter transitions (high bigram-frequency lists) and a subset that 
contained less frequent transitions (low bigram-frequency lists).   In our simulation, the model was trained 
on lists involving the same letters used in the empirical study, generated using the corpus-based 
transition probabilities.    At test, non-repeating lists including the same 9 letters were presented.  These 
were divided into two groups, based on a median split on cumulative bigram frequency.      
 
For the Baddeley (1964) simulation,  training proceeded for a total of 116,000 lists of each length (for 8-
item lists, this meant exposure to well under 1/1,000,000 of potential target lists).  For the simulation of 
Kantowitz, et al. (1972), training involved a total of 24,000 lists at each length (allowing for presentation of 
less than 1/15,000 of potential target lists of length 9).   
 
Results.   Baddeley (1964) compared recall for 8-item lists that conformed to the bigram frequency 
structure of English with recall for lists that preserved only  isolated letter frequencies.  As illustrated in 
Figure 3 (left), first-order lists were recalled more accurately than zero-order lists.    The performance of 
the present model is illustrated in Figure 3 (right).   As in the empirical data, recall was more accurate for 
first-order lists.   Our goal in the present studies was to reproduce qualitative patterns of performance, 
rather than seeking quantitative fits.  However, it is worth noting that the bigram frequency effect is, if 
anything, stronger in the simulation than in the empirical data.   
 
Similarly confirmatory results were obtained in our simulation of the study of Kantowitz, et al. (1972).   
Their data was presented in the form of positional accuracy curves (Figure 4, left), which indicated that 
high bigram-frequency lists were recalled more accurately than low bigram-frequency lists, with the 
discrepancy being small at early list positions, and growing over time.   Our simulation results, plotted in a 
similar manner, are shown in Figure 4 (right).   Once again, the model's behavior closely resembled that 
reported in the empirical  study.   
 

 
 
 
Figure 3.   Percentage of letters recalled in the correct position, for lists based on first-
order transition probabilities, and zero-order letter probabilities.   Empirical data are 
estimated from Figure 1 of Baddeley (1964).    Simulation data are based on a sample of 
5000 trials.  
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Figure 4.  Proportion correct responses, by position, for letter lists involving high and 
low bigram-frequencies (BF).   Data are estimated from Figure 1 of Kantowitz, Ornstein, 
and Schwartz (1972).    Simulation data are based on a sample of 5000 trials.  

 

 
 
General discussion 
 
It is well established that short-term memory for serial order is subject to constructive effects.  
Background knowledge concerning the sequential structure of a domain influences the recall of items 
drawn from that domain.   This fact, illustrated by such phenomena as the bigram frequency effect, 
presents a puzzle for models of serial recall.  On the one hand, it requires that the relevant memory 
mechanisms be sensitive to distributional patterns governing item-to-item transitions.   On the other hand, 
this must be accomplished without making the encoding of specific items wholly dependent on inter-item 
chaining. 
 
We have presented a recurrent neural network model of immediate serial recall, which shows how both of 
these constraints might be met by a single mechanism.  The model simulates Baddeley (1968), indicating 
that it does not function simply by chaining.   However, the model also clearly displays the bigram 
frequency effect, showing that its recall performance is influenced by domain-specific background 
experience.    To our knowledge, this is the only published model of immediate serial recall that accounts 
for this combination of findings.   
 
It is a key feature of the model's sequencing mechanism that it is shaped by domain-specific experience.  
Importantly, the specific, tuned sequencing mechanism that develops through this experience is neither 
obliged to work through inter-item chaining, nor restricted from doing so.  Instead, the degree to which 
item-to-item transitions are utilized depends on the nature of the domain and the task.  Where inter-item 
associations are unhelpful for the task of recall, the mechanism will learn to neglect them. However, in 
cases where such associations can be leveraged for performing recall, the sequencing mechanism will 
learn to capitalize on them.   In situations where the system does learn to utilize sequential dependencies, 
recall is improved for items that fit well with the sequential structure of their source domain, and hindered 
for items that do not fit well.  It is this aspect of the model that leads it to display the type of constructive 
memory effects  we have sought to address. 
 
Some further analyses of the model’s performance have led to an interesting observation, and in turn, a 
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prediction.  As we have shown, the model’s recall performance depends on the goodness-of-fit between 
the sequential structure of target lists and the sequencing constraints associated with their source 
domain.  For brevity, we may refer to this goodness-of-fit as a list’s “grammaticality.”  A closer look at the 
model’s performance indicates that, in fact, it is not precisely the grammaticality of the target material that 
determines accuracy of recall.  Rather it is the grammaticality of this material relative to other potential 
responses.   This is because alternative responses that are much more grammatical than the target are 
prone to ‘intrude’ on recall.    As a result, recall of a target item depends not only on the grammaticality of 
the target list, but also on the grammaticality of all other potential responses.    This fits well with empirical 
evidence from bigram frequency studies, which have indicated a tendency to regularize; when recall is 
inaccurate, the list reported tends to be more grammatical than the original list (see, e.g., Mayzner & 
Schoenberg, 1964).    However, this is still not the entire story.   On the model’s account, the tendency of 
alternative responses to intrude depends not only on their relative grammaticality, but also on their 
distance from the target.   Items that are similar to the target are more likely to appear as responses than 
items that are dissimilar.   Of course, this tendency,  considered on its own, is a well-known aspect of 
serial recall.   The novel observation from the model is that recall in structured domains is determined by 
an interaction, for all alternative responses, between 1) their grammaticality relative to the target, and 2) 
their distance from the target.     
 
This aspect of the model’s function can be illustrated using the following scenario, which translates into a 
testable prediction.  Consider two target lists with an identical degree of grammaticality (for example, two 
consonant lists fitting equally well with the constraints of English).   Now assume that, for one of these, 
there is an alternative response that is far more grammatical than the target, and that is also very similar 
to the target.  Meanwhile, for the other target list, there is no such enticing neighbor.  Every alternative list 
that is at all similar to this target is highly ungrammatical.   If the account provided by the model is correct, 
the second of these two targets should be recalled better than the first.    This prediction, and the 
hypothesized interaction that it reflects, is currently being put to experimental test in our laboratories.    
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