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ABSTRACT 

Three forward models are presented that map articulatory 
positions onto acoustic outputs for a single speaker of the 
MOCHA speech database. Backpropagation learning was 
used to train the forward models on a database of 460 
TIMIT sentences. Efficacy of the trained models was 
assessed by subjecting the model outputs to speech 
intelligibility tests. The results of these tests showed that 
enough phonetic information was captured by the models to 
support fairly high rates of word identification in sentences. 
These forward models provide the first step toward 
building a connectionist model of spoken word acquisition 
trained on real speech. The design of this model is based on 
a theory of phonological development in which distributed 
codes are learned in the service of spoken word perception, 
production, and comprehension. 

1. INTRODUCTION 

Perceptual processes exist in auditory and visual cortex to 
support speech perception [1], and motor processes exist in 
motor cortex to support speech production [2]. It is also 
very likely that other processes exist to serve the dual 
purpose of supporting both speech perception and speech 
production. Some of these multi-purpose processes are 
likely to be semantic or morphological in nature because 
these levels of representation are needed for both speech 
comprehension and speech production. Phonological 
representations are also needed for comprehension and 
production, and there are data consistent with the existence 
of multi-purpose phonological representations in cortex [3]. 
However, little is known about how such representations 
might be structured, or how they might emerge over the 
course of spoken language acquisition.  

In previous work [4], we outlined a theory of spoken word 
acquisition in which a distributed level of representation is 
learned in support of three complementary functions: 1) 
integrate the incoming speech signal over time to activate 
stable representations of single words, 2) generate 
articulatory trajectories for single words, and 3) link the 
peripheral processes of spoken word perception and 
production with the semantic representations of words (see 
Figure 1). The nature of these functions has led us to 

following hypothesis: the structure of the distributed codes 
at the mediating level of representation should become 
correlated with the phonological structure of the native 
language. This hypothesis motivated the name 
phonological junction for this mediating level of 
representation.  

On our theory, a key to the development of the 
phonological junction is the relationship between 
articulatory gestures and their acoustic consequences. We 
hypothesized that a forward model is learned through 
babbling and early attempts at intentional utterances. The 
forward model learns to predict the acoustic consequences 
of any given articulatory gesture. This predictive power is 
used to link the learning that occurs in speech 
comprehension with the learning that occurs in speech 
production. It is by virtue of this link that the phonological 
junction becomes a multi-purpose level of representation. 

To provide some computational support for the viability of 
our theory, we implemented it in a connectionist model [4].  
The model was successful in that representations were 
learned to support the three functions just listed, and 
simulation results were consistent with some basic findings 
in the developmental literature on speech acquisition.  
However, the acoustic and articulatory representations used 
in that model were artificial, i.e., they were abstractions 
designed to capture at least some of major dimensions of 
phonetic information.  The use of artificial representations 
makes it difficult to determine whether any shortcomings of 
the model are due to shortcomings in the theory, or 
shortcomings in the representations. 
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Figure 1: Junction model of spoken word acquisition 



2. CURRENT STUDY 

In these proceedings, we report on the initial stages of an 
effort to implement our theory in a model trained on real 
speech tokens. The use of real speech tokens will provide 
us with an empirical means of testing whether the model 
has captured at least some of the phonetic complexity of 
real speech. Specifically, we can test the intelligibility of 
speech produced by the model. Intelligible speech would 
help to quell concerns about the use of simplified 
representations. It would also enable us to directly compare 
model performance with empirical findings on 
phonological development. 

A logical starting place for such an effort is to train a 
forward model on a database of speech tokens. In our 
theory, the forward model is a foundational piece of the 
larger model because speech production cannot develop 
properly without at least a partially working forward model. 
From a more pragmatic point of view, a working forward 
model would verify that enough information is present in 
the articulatory recordings to “ regenerate”  the phonetic 
information in the acoustic recordings. This is an essential 
precursor to embarking on the task building a full model of 
our theory. 

Here we present the results of building a forward model 
based on an articulatory and acoustic database of real 
speech tokens. The model was built as an artificial neural 
network, and the model parameters (i.e., connection 
weights) were learned through the back-propagation of 
error signals from acoustics. The model was tested by 
presenting the acoustic outputs to listeners who transcribed 
what they heard. The percentage of words transcribed 
correctly served as a measure of speech intelligibility. The 
amount of phonetic information captured by the model was 
estimated by comparing intelligibility of the model tokens 
with intelligibility of the database tokens (i.e., the targets of 
the model). Model generalization was assessed by training 
separate models on half of the tokens in the database, and 
measuring the intelligibility of the untrained tokens.  

3. METHODS 

Database. Speech tokens were drawn from one female 
speaker of British English (subject ID “ fsew” , southern 
dialect) in the multi-channel articulatory (MOCHA) speech 
database [5] recorded at the Edinburgh speech production 
recording facility. The database is being developed  
primarily for purposes of automatic speech recognition 
(acoustic-to-articulatory mapping, i.e., an inverse model), 
but it is well-suited for building a forward model. 

Speech tokens. The database consisted of one token each of 
460 sentences based on the TIMIT database. All 460 tokens 
were used for training and testing.  

Articulatory recordings. The MOCHA database consists of 
three different types of articulatory recordings (see Figure 
2): electromagnetic articulograph (EMA), laryngograph, 
and electropalatograph (EPG). All three types were used 

for the forward model as follows. 

• EMA sensors captured XY positions in the midsagittal 
plane for the upper and lower lips and incisors, the soft 
palate (velar port opening), and three positions on the 
tongue (tip, blade, and dorsum). On the basis of these 
sensor positions, 18 EMA dimensions were derived for 
input to the forward model. Each dimension was an X or 
Y coordinate of one of the sensors, set relative to the 
incisor positions or the centroid of the three tongue 
positions. 

• EPG sensors captured tongue contact with the hard palate. 
Forty-eight binary sensors (contact or not) were recorded 
for the database, but only the front 24 sensors were used 
as input to the forward model (the back 24 carried little or 
no information for speaker FSEW). 

• Laryngograph recordings captured source information in 
the form of vocal fold vibrations. Fourier (FFT) analysis 
was performed on Hamming windows 64 ms wide, taken 
at 32 ms intervals. Given the recording sample rate of 16 
KHz, this procedure resulted in 512 frequency bins of log 
magnitude per window. To capture voicing and pitch 
information, only the lower 25 bins (up to 400 Hz) were 
used as input to the forward model.  

 

Figure 2: Placements of articulatory sensors (from [5]) 

Acoustic recordings. In the MOCHA database, the speech 
signal was recorded with 16 bit sampling at a rate of 16 
KHz. To create acoustic targets for the forward model, the 
same FFT analysis as for the laryngograph recordings was 
performed on the acoustic wave forms. All but one (DC 
offset) of the FFT bins were used in the models (511 total). 

Model representations. Each articulatory and acoustic 
dimension was standardized to real values between 0 and 1 
(except for the EPG dimensions, which were binary). To 
help spread out values along the scale, extremely low and 
high measurements were truncated prior to standardization. 
For acoustic, laryngograph and EPG measurements, each 
dimension was assigned one unit in the neural network 
model (see below). For EMA measurements, each 
dimension was assigned two units, one to represent the 
lower range of values (0 to 0.5), the other to represent the 
upper range (0.5 to 1). 



In the MOCHA database, the data streams were sampled at 
various rates, but for the model, all dimensions were 
sampled at 32 ms intervals (31.25 Hz), aligned with the 
acoustic and laryngograph FFT windows. Over the 460 
speech tokens, there was a total of 41,791 samples. 

Model architecture. A forward model must be able to 
produce an acoustic trajectory through time, given an 
articulatory trajectory as input. However, the physical 
relationship between the vocal tract and the resulting 
acoustics can, at least for practical purposes, be described 
instantaneously. Therefore, the forward model was built to 
generate an acoustic output at a given moment in time, i.e., 
for a single FFT window 64 ms wide. To capture 
articulatory positions and movements over this 64 ms 
window, the model was built to generate an acoustic output 
on the basis of the previous, current, and next articulatory 
states (each 32 ms apart). Model trajectories were 
generated by inputting successive articulatory states to 
generate successive acoustic states. 

The model inputs were mapped onto the outputs via 
weights on direct connections, and weights mediated by 
two layers of hidden units (see Figure 3). This architecture 
allowed first order relationships between the inputs and 
outputs to be coded separately from higher order 
relationships. The number of hidden units (50 per group) 
was chosen to be relatively small to avoid overfitting of the 
training data. 

Articulatory values were clamped to the input units, and 
activations of the hidden and output units were calculated 
by the logistic function of their net inputs. Net inputs were 
calculated as the dot product of the incoming weight vector 
with the vector of presynaptic activations.  

Model training. Weights were adjusted to minimize squared 
error between acoustic targets and outputs (i.e., supervised 
learning). Weight derivatives were calculated by the 
back-propagation of error signals (i.e., gradient descent 
learning). Derivatives were accumulated over batches of 
5000 samples drawn at random from the training sets (see 
below). After each batch, weight changes were made 
according to 
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where ηN was the overall network learning rate (decreased 
from 5e-4 to 5e-5 over the course of training), ηij was a 
weight-specific learning rate, α was a momentum term 

(fixed at 0.8), and b was the Nth batch over the course of 
training. Weight-specific learning rates were adjusted on 
the basis of the consistency of weight derivatives across 
batches. 

Three models were trained with three different sets of 
training samples. One set consisted of all samples from all 
460 speech tokens (full), one set was trained on the 
odd-numbered tokens (odd), and one on the even-numbered 
tokens (even). The arbitrary odd/even split was made to test  
generalization to untrained tokens. Each model was trained 
on 30,000 batches of samples.  

4. RESULTS 

At the end of training, the average amount of squared error 
per unit per training example was 0.023 for the full set, 
0.028 for the odd set, and 0.028 for the even set (the 
maximum possible squared error was 1). In Figure 4, the 
error for each model is plotted as a function of frequency. 
The figure shows that there was a general trend for the 
models to perform more poorly as frequency increased. 
This trend was probably due, in part, to the fact that 
frication causes unpredictable fluctuations in energy at the 
higher frequencies. Another result was that there was a dip 
in error at the low end of the frequency range. This dip was 
likely due to the fact that the laryngograph inputs provide 
voicing and pitch information that exists at these lower 
frequencies (i.e., up to 400 Hz). 
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Figure 4: Error as a function of frequency for each model

Intelligibility tests. Four types of tokens were subjected to 
listening tests: target tokens, and output tokens from the full 
model, the even model, and the odd model. The model 
tokens were generated by inputting the articulatory states 
for a given sentence to the models, and inverting the FFT 
outputs to create corresponding wave forms.  

Two undergraduates and one graduate student listened to all 
460 sentence tokens. For each listener, one quarter of the 
tokens were the targets, one quarter were generated by the 
full model, one quarter by the odd model, and one quarter 
by the even model. Tokens were presented in random order 
over Sennheiser mh80 headphones in a quiet room at a 
comfortable volume. Listeners heard each token exactly 
three times before typing in their responses. Listeners were 
instructed that all the stimuli would be legal English 
sentences spoken by a female with a British accent (the 
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Figure 3: Architecture of the forward models 
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listeners spoke American English), and that they should 
type in every word that they heard, in the order that they 
heard the words. Guessing was encouraged, but incomplete 
responses were also allowed.  

Responses were corrected for spelling errors, and the 
percentage of words transcribed correctly was calculated as 
a measure of intelligibility. Results are shown in Table 1.  

Token Type Listener 1 Listener 2 Listener 3 Average 

Target 93.1 88.2 94.7 92.0 

Full 82.8 67.2 74.2 74.8 

Odd 75.8 67.7 75.9 73.2 

Even 77.1 67.2 71.0 71.8 

Trained 80.5 73.4 81.5 78.5 

Untrained 72.4 61.5 65.5 66.5 

Table 1: Percent words correct on intelligibility tests 

Intelligibility of the targets was fairly high, and 
intelligibility of the models could not be expected to exceed 
the target intelligibility. Less than perfect performance for 
the targets may have been due to the British accent of the 
speaker, or to the FFT processing of the original wave 
forms (which removes and distorts some information in the 
signal). Also, many of the sentences were long (causing 
memory to be a limiting factor on performance), and they 
often contained unusual words or phrases.  

Model intelligibility was also fairly high (average of 73.2% 
words correct), although it was 18.8% worse than 
performance on the targets (more listeners are necessary to 
assess the statistical reliability of any observed differences 
in intelligibility). Intelligibility for the full, odd, and even 
models was about the same on average. For the odd and 
even models, intelligibility was 12% worse on the 
untrained tokens compared with the trained tokens. This 
relatively small difference in performance indicates that the 
mappings learned by the models were highly, but not 
perfectly, generalizable to novel inputs. 

5. CONCLUSIONS 

The results of this study demonstrate that the mapping from 
articulation to acoustics can be learned for at least one of 
the speakers in the MOCHA database. The intelligibility 
tests showed that enough phonetic information is captured 
by this learned mapping to support fairly high rates of word 
identification in sentences.  The comparisons between 
trained and untrained tokens showed that the learned 
mappings had captured general relationships between 
articulation and acoustics, rather than specific I/O pairings.  

Further work is necessary to determine why model 
intelligibility fell short of the targets. One potential factor is 
that the articulatory inputs provided only a crude sampling 
of the vocal tract. A second potential factor is that the 

model representations, computational capacity, or learning 
mechanisms may have been deficient in some way. 
Exploration of the model parameters may reveal some of 
these potential deficiencies. However, if model 
performance never reaches the targets, it will be difficult to 
ultimately determine the causes for this shortcoming. 

A more tractable problem is to determine the kinds of 
phonetic information that were and were not captured by 
the models. This problem can be addressed in the current 
study by analyzing word omissions and substitutions to 
estimate which phonetic features were more or less likely to 
be preserved in the models. This work is currently 
underway. A more direct method would be to conduct 
phoneme identification tests with simple CVC or VCV 
speech tokens. Phoneme confusion matrices could then be 
generated to more clearly reveal the transmission of 
phonetic feature information. Unfortunately, the MOCHA 
database does not contain such speech tokens. 

In conclusion, the relative success of the forward models in 
this study is a first step towards building a model of spoken 
word acquisition based on real speech. The biggest and 
most daunting steps lie ahead. Most notably, a level of 
representation must be shaped to integrate over incoming 
words, generate articulatory trajectories to produce words, 
and connect these input and output processes with the 
semantics of words. If successful, we will be able to listen 
to the model over its course of learning, and compare it 
against the empirical data on spoken word acquisition. 
Such a model would be a valuable tool for making progress 
towards an understanding of speech development. 
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