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algebraic rules. In their simulations (as
in the Marcus et al. experiment) only
half the test sequences have the same
structure as the sequences used in
training. Nonetheless, the learning
process quickly induces similarity
among the novel and familiar syllables.
As a result, sequences made from the
new elements cannot help but tap into
the knowledge the system has built up
about the sequential structure present
in the trained sequences, thereby pro-
ducing generalization.

In summary, we have described a
number of possible ways in which the
type of generalization exhibited by in-
fants in the Marcus et al. experiments
might arise, not from abstract rules,
but from the operation of statistical
learning mechanisms whose existence
is uncontested. We do not claim that
one of these possibilities is necessarily
correct; our goal has simply been to
point out that there are several alter-
natives to abstract, algebraic rules, and
that the results do not implicate such
rules because they provide no differen-
tial support for abstract rules relative
to the other alternatives.

Conclusion
Generalization of knowledge from
given examples to new cases is crucial
for intelligent behavior; as Marr14

pointed out, experience never repeats
itself, and so our reactions to every ex-
perience depend to some degree on
generalization. Marcus and his collabo-
rators are right to emphasize the im-
portance of generalization, and the ex-
periments they have reported likely
reflect the existence of impressive
powers of generalization in infants.
We have suggested, however, that
some participants in the debate about

the need for rules may have underesti-
mated the potential of alternative
forms of computation to address the
problem of generalization by mistak-
enly assuming that statistical learning
procedures, including neural networks,
are doomed to compute statistics only
over ‘given variables’4. In fact neural
networks make extensive use of inter-
nal representations, onto which the
given variables (i.e. the raw input) are
mapped. What sets some of the most
interesting types of statistical learning
procedures often used with neural net-
works apart from older (and for some,
more familiar) statistical procedures is
the fact that the network procedures
can learn what internal represen-
tations ought to be assigned to the
given variables. It seems likely to us
that infants are born with predispos-
itions to encode inputs in particular
ways and with powerful statistical
learning procedures like those cur-
rently used in network models that can
help them refine their initial predispos-
itions and discover new ones. As far as
we can tell, there is no evidence to 
suggest that such procedures are in-
sufficient to account for the sort of
generalization seen in the Marcus et al.
experiments.
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M c C l e l l a n d  &  P l a u t  –  L e a r n i n g  i n  i n f a n t s

Connectionism: 
with or without rules?
Response to J.L. McClelland and D.C. Plaut
(1999)

Gary F. Marcus

It is not altogether surprising that
McClelland and Plaut, researchers with
longstanding interests in providing al-
ternatives to rules, find our recent ex-
periments unconvincing [McClelland,
J.L and Plaut, D.C. (1999) Does general-
ization in infant learning implicate 
abstract algebra-like rules? Trends
Cognit. Sci. 3, 166–168]1. But advocates
of their cognition-without-rules view
might want to look elsewhere to bol-
ster their case, as none of McClelland
and Plaut’s objections turns out to be
plausible. 

Before addressing their objections,
let me outline what I see as three im-

to represent items experienced
during training and test. For prior
learning to generalize to a new
stimulus, the representation of
the new stimulus must overlap
with – that is, activate some units
in common with – the represen-
tation of the stimuli on which
learning is based. This is because
learning occurs by the adjustment
of connection weights between
specific units in a network, and so
a new input must activate some of
the same units whose weights
were influenced by prior experi-
ence to benefit from that experi-
ence. (Ref. 1, p. 166.)

As it turns out, I made almost ex-
actly this point in a recent article2.
Where we seem to disagree is with the
implications of this fact about overlap.
The problem, as I see it, is that this 
inability to generalize to non-overlap-
ping items renders a certain class of
network models inappropriate for
many cognitive tasks, because in many
cognitive tasks we are required to 
generalize to new items that do not

portant points of agreement. First, we
all seem to be interested in the study of
how cognition could be realized in a
neural substrate. Second, we all believe
that the study of neural networks can
be helpful in this regard.

Third, we agree that a basic prop-
erty of the class of models that
McClelland and Plaut advocate is that
they depend on the overlap of fea-
tures. As they put it:

generalization in neural net-
works depends on overlap of rep-
resentations – that is, the patterns
of activity used in the network –
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overlap with the items that we have
seen before. 

The experiments in our Science
article3, discussed by McClelland and
Plaut, were designed to address pre-
cisely this point, testing whether in-
fants could generalize an abstract re-
lation, such as the one found in ‘ABA’
grammar consisting of sentences such
as ‘li-ti-li’ and ‘ga-ti-ga’, to novel items
that didn’t overlap with previous
items. Infants were able to do this, dis-
criminating consistent test sentences
like ‘wo-fe-wo’ from inconsistent test
sentences like ‘wo-fe-fe’. If words are
represented as independent items, as
they are in, say, Elman’s work on the
popular simple recurrent network4, the
test items do not overlap with the ha-
bituation items, thus the standard ver-
sion of the simple recurrent network
does not succeed in making the dis-
crimination. This is exactly as would be
expected, given McClelland and Plaut’s
discussion about the importance of
overlap. (This is an entirely replicable
result, using a wide range of network
parameters. Readers who wish to verify
this for themselves can look at the sam-
ple files we provide at http://www.
psych.nyu.edu/~gary/es.html.)

Furthermore, our experiments
were designed in such a way that even
if the input were encoded as sets of
phonetic features a standard simple re-
current network would still be unable
to discriminate the consistent and in-
consistent test stimuli. Again this fol-
lows because the relevant features that
would discriminate consistent from in-
consistent test items did not overlap
with what the model would have
learned about in the habituation.

Of course, what counts as ‘overlap-
ping’ depends on how inputs are en-
coded. The words cat and dog would
presumably overlap if they were rep-
resented as sets of semantic features,
but not if they were represented in 
terms of their orthographic (i.e. spelling)
features.

Auditory contours: an alternative
account?
It is in this context that McClelland and
Plaut point out, quite rightly, that in-
fants could encode our stimuli in other
ways, for example, in terms of sound
contours like ‘+loud, –loud, +loud’. If it
were the case that the test items over-
lapped in terms of those sound con-
tours, infants could (in principle) suc-
ceed using a standard simple recurrent
network that used those features as 
inputs (although one could quibble
about whether the model could do so
fast enough, etc.). Of course, this alter-
native would only work if the relevant
sound contours are available in our
data, and if the child encodes the lin-
guistic-like stimuli using those contour
features. But McClelland and Plaut did
not actually test our materials to see if
these contours were present. As it
turns out, the relevant differences (be-
tween bo and po and between ko and

ga) appear to be less than one decibel,
and hence unlikely to be discernible.

In any event, even if the differ-
ences were somewhat larger, we doubt
that a child would use them. Words
vary in their loudness and pitch all the
time, but for the most part we seem to
filter out that variability: no language
learner should treat the word cat dif-
ferently depending on whether it is
spoken at 62 decibels or 63. Likewise,
excepting tonal languages, we would
not expect a language learner to treat
words differently depending on slight
variations in pitch.

Still, on the maxim that it is more
convincing to counter argument with
data than with further argument, we
have collected preliminary data from
six infants in a follow-up experiment.
In this experiment, infants were again
trained on either AAB or ABB sen-
tences, but we changed the second
word of each test sentence such that it
was noticeably different in loudness
(by about 2.5 db) and pitch from the
first and third words. If infants were 
relying on the sound contours, the ef-
fects in our original experiments would
disappear in this version. Instead, the
results appear to be unchanged: five of
our six subjects looked longer at the
syntactically inconsistent test items
than at the syntactically consistent
items, in line with what we found in
our earlier work. This is exactly as it
should be, for what matters in lan-
guage (tonal languages and stress
aside) is not how loudly somebody says
something, nor the fundamental fre-
quency of their voice, but rather what
words they are saying and what the 
relationship is between those words. 

Statistics
Elsewhere McClelland and Plaut ap-
pear to broaden the notion of statistics
from things like transitional probabil-
ities between particular elements to
any kind of relation between any kind
of information, concrete or abstract.
The trouble is that this broader notion
of statistics trivializes the very term,
rendering it broad enough to encom-
pass any lawful relationship, including
for example, the very rules that
McClelland and Plaut argue against.
For example, by the definition of statis-
tics that McClelland and Plaut implicitly
adopt, if a language produced sen-
tences only of the type noun-phrase
followed by verb-phrase, one could 
describe the language in terms of a
phrase-structure rule [Sentence→Noun-
Phrase, Verb-Phrase], but also in terms
of a statistical pattern in which verb
phrases follow noun phrases one hun-
dred percent of the time. We did not
mean to deny that children could make
use of statistics in this broader, prob-
ably unfalsifiable sense; our intent was
only to argue against the narrower 
definition of statistics. Our criticism of
models that rely purely on transitional
probabilities between words still holds,
and we do not see a proposal for a kind

of statistical reasoning that would suc-
ceed in our task without (perhaps
covertly) encompassing rules.

It is also, of course, fine to have
some external device compute whether
any two items are the same, and then
compute the statistical likelihood that
that external same–different system
will say ‘yes’. But if that external system
itself implements a rule (e.g. a line of
computer code that says, for all sylla-
bles x, y, if x equals y execute condition
A, otherwise execute condition B), we
are still left with a system that incorpo-
rates a rule. Relocating a rule is not
tantamount to eliminating it.

Learning the learning mechanism
Another idea worth considering is
McClelland and Plaut’s suggestion that
the learning mechanism itself could be
learned: ‘...powerful mechanisms might
simply be ones that help statistical
learning procedures generalize in pow-
erful ways. Furthermore, these mecha-
nisms might themselves be learned.’
While we agree that it is a logical possi-
bility that some learning mechanisms
might themselves be learned, we note
that (1) no such proposal has actually
been made, and (2) there must be a so-
lution to the bootstrapping problem;
which is to say that on pain of infinite
regress, learning can only take place in
a system in which at least some learn-
ing mechanism is innate.

Models
In the remainder of their critique,
McClelland and Plaut focus on connec-
tionist models, attacking a claim that
we never made. We never intended to
deny that one could build a neural net-
work that could capture our data.
Rather we aimed ‘to try to characterize
what properties the right sort of neural
network architecture must have’. Here
and elsewhere the difference between
different kinds of neural network mod-
els has been obscured, as though all
networks were alike, and as if the suc-
cess of a given network model auto-
matically counted against the rule 
hypothesis. But networks are not in
fact all alike – some implement rules
(overtly or covertly), some do not. Our
work aimed to provide a mechanism
for choosing between different types
of models; as we shall see, the models
that work the best are those that 
implement, rather than eliminate,
rules.

Seidenberg and Elman
For example, consider the recent
model of Seidenberg and Elman men-
tioned by McClelland and Plaut. To
some extent this model can capture
our data  (McClelland and Plaut con-
cede that the model is not perfect,
writing that ‘one may quibble with the
particulars of the reported simu-
lation’). But this model turns out to de-
pend on a behind-the-curtain ‘teacher’
that itself incorporates a rule. (In this
case, the rule – that is, operation over
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variables that can be applied to any in-
stance – was probably implemented as
a line of computer code such as ‘if a = b
then output 1 else output 0’.)

In this respect, the Seidenberg and
Elman model is a significant departure
from Elman’s earlier work, abandoning
his commitment to ‘prediction tasks’.
As Elman himself noted5 the virtue of
the prediction task is that ‘One [issue]
which arises with supervised learning
algorithms such as backpropagation of
error is the question of where the
teaching information comes from. In
many cases, there are plausible ration-
ales which justify the teacher. But the
teacher also reflects important theo-
retical biases which one might some-
times like to avoid’ whereas ‘the pre-
diction task... represents information
which is directly observable from the
environment.’ In contrast, the
Seidenberg and Elman model depends
on an internal teacher that must do
some computation on the information
provided in the environment. There is
nothing wrong with such a deus ex
machina but it is crucial to realize that
the deus ex machina, which itself de-
pends on a rule, must be taken as part
of the system as a whole, and to realize
that without that rule, the whole sys-
tem breaks down. As I have written
elsewhere in a reply to Seidenberg and
Elman, they ‘have not eliminated the
rule, they have simply hidden it’6.

Dienes and Altmann
Finally, let us turn to the model by
Dienes, Altmann and Gao7 that
McClelland and Plaut advocate. Unlike
the Seidenberg and Elman model,
Dienes and Altmann’s architecture
does not include an external teacher
that builds in a sameness-detecting
rule. Instead, the Dienes et al. model
instantiates a different hypothesis
about transfer, one in which words in a
second vocabulary are mapped onto
words in a first vocabulary. McClelland
and Plaut speculate that this model
might be able to capture our data.

We have not yet had time to ana-
lyze fully whether this model can in
fact capture our data, but in our pre-
liminary experiments with the model
we have found the following: if the

model is trained on our habituation
sentences (e.g. ‘la-ta-la’ and the like)
and then tested on many consistent
test sentences with a new vocabulary,
such as ‘wo-fe-wo’, and then subse-
quently tested on ‘fe-wo-wo’ versus
‘fe-wo-fe’, the model is more ‘sur-
prised’ to hear ‘fe-wo-fe’ (consistent)
than ‘fe-wo-wo’ (inconsistent). We sus-
pect that this is a consequence of map-
ping the second vocabulary onto the
first, but we doubt that children would
do the same, and plan to test this pre-
diction of the model.

Discussion
None of this is to say that you cannot
build a connectionist model that can
capture our results. The property of
generalizing only to overlapping items
is not intrinsic to neural networks; it is
possible to build neural networks that
do not have that property. As we
noted in our article, Holyoak and
Hummel8,9 had already done so, build-
ing a model that captures a task that is
equivalent to ours; Shastri and Chang
(pers. commun. and Refs 10,11) have
now done so as well. But these authors
embrace rules rather than scorning
them, implementing explicit variables
and abstract relationships between
variables. From the perspective of com-
paring a broad range of possible mod-
els, it is unfortunate that McClelland
and Plaut do not even address the kinds
of model that Holyoak and Hummel
and Shastri and Chang advocate.

McClelland and Plaut worry that
they ‘don’t really see how experiments’
like ours can tell us ‘whether [infants]
use rules’ – without suggesting any al-
ternative. We find such a view to be
unduly pessimistic, casting questions
about models as unanswerable. While
we acknowledge the fact that it is im-
possible to test the broad framework
of connectionism – which encompasses
both systems that use rules and those
that do not – it is possible to use empiri-
cal data to choose between classes of
models, and we believe that our experi-
ments do so. Our data are not readily
captured by models that do not incor-
porate rules (such as the original ver-
sion of the Simple Recurrent Network)
but work by Holyoak and Hummel, and

Shastri and Chang, has shown that our
results can be captured in a variety of
models, including connectionist mod-
els that do incorporate rules.
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