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1 Introduction

Many researchersassumethat the mostappropriateway
to expressthe systematicaspectsof languageis in terms
of a setof rules. For instance,thereis a systematicre-
lationshipbetweenthewritten andspokenformsof most
English words (e.g., GAVE

���������
	�� ), and this relation-
ship can be expressedin terms of a fairly conciseset
of grapheme-phonemecorrespondence(GPC)rules(e.g.,
G
������ , A E

��������� , V
����	�� ). In addition to being

ableto generateaccuratepronunciationsof so-calledreg-
ular words,suchrulesalsoprovide a straightforwardac-
count of how skilled readersapply their knowledge to
novel items—forexample,in pronouncingword-likenon-
words(e.g.,MAVE

���������
	�� ). Most linguistic domains,
however, are only partially systematic. Thus, thereare
many English words whose pronunciationsviolate the
standardGPC rules (e.g., HAVE

��������	�� ). Given that
skilled readerscanpronouncesuchexceptionwordscor-
rectly, GPCrulesaloneareinsufficient. More generally,
skilled languageperformanceat every level of analysis—
phonological,morphological,lexical, syntactic—requires
botheffectivehandlingof exceptionalitemsandtheabil-
ity to generalizeto novel forms.

In the domain of reading, there are three broad re-
sponsesto this challenge. The first, adoptedby “dual-
route” theories(e.g.,Coltheart,Curtis,Atkins, & Haller,
1993;Zorzi,Houghton,& Butterworth,1998),is to addto
theGPCsystemaseparate,lexicalsystemthathandlesthe
exceptions. The secondresponse,adoptedby “multiple
levels” theories(e.g.,Norris,1994;Shallice& McCarthy,
1985), is to augmentthe GPC ruleswith more specific,
context-sensitive rules, (e.g., OOK

��������� as in BOOK),
including rules that apply only to individual exceptions
(e.g., HAVE

��������	�� ). Both of theseapproachesretain
thegeneralnotionthatlanguageknowledgetakestheform
of rules(althoughsuchrulesmaybeexpressedin termsof
connections;see,e.g.,Norris,1994;Reggia,Marsland,&
Berndt,1988;Zorzi etal., 1998).

The third responseto the challenge,adoptedby dis-
tributed connectionisttheories(Plaut, McClelland, Sei-
denberg, & Patterson,1996; Seidenberg & McClelland,
1989;VanOrden,Pennington,& Stone,1990)andelab-
oratedin the currentpaper, is more radical. It eschews
thenotionthattheknowledgesupportingonlinelanguage
performancetakestheform of explicit rules,andthusde-
nies a strict dichotomy between“regular” items which
obey therulesand“exception”itemswhich violatethem.
Rather, it is claimedthat languageknowledgeis inher-
ently graded,and the languagemechanismis a learning
device that gradually picks up on the statisticalstruc-
ture amongwritten and spoken words and the contexts
in which they occur. In this way, the emphasisis on the
degreeto which themappingsamongthespelling,sound,
andmeaningof a givenword areconsistentwith thoseof
otherwords(Glushko, 1979).

To make this third perspective concrete, consider
the connectionist/paralleldistributed processing(PDP)
framework for lexical processingdepictedin Figure 1
(basedon Seidenberg & McClelland,1989). As the fig-
uremakesclear, theapproachdoesnot entaila complete
lackof structurewithin thereadingsystem.Thereis,how-
ever, uniformity in the processingmechanismsby which
representationsaregeneratedandinteract,andin this re-
spectthe approachis quite differentfrom dual-routeac-
counts. Orthographic,phonological,and semanticin-
formation is representedin termsof distributedpatterns
of activity over groupsof simple neuron-like process-
ing units. Within eachdomain,similar wordsarerepre-
sentedby similar patternsof activity. Lexical tasksin-
volvetransformationsbetweentheserepresentations—for
example,readingaloudrequirestheorthographicpattern
for a word to generatethe appropriatephonologicalpat-
tern. Suchtransformationsareaccomplishedvia the co-
operative and competitive interactionsamongunits, in-
cludingadditionalhiddenunits that mediatebetweenthe
orthographic,phonological,andsemanticunits. In pro-
cessingan input, units interact until the network as a
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Figure1: A connectionistframework for lexical process-
ing, basedon thatof Seidenberg andMcClelland(1989).
Reprintedfrom (Plaut,1997).

wholesettlesinto a stablepatternof activity—termedan
attractor—correspondingto its interpretationof the in-
put. Unit interactionsaregovernedby weightedconnec-
tions betweenthem, which collectively encodethe sys-
tem’s knowledgeabouthow the differenttypesof infor-
mationare related. Weightsthat give rise to the appro-
priatetransformationsarelearnedon thebasisof thesys-
tem’s exposureto written words,spokenwords,andtheir
meanings.

At a generallevel, the distributed connectionistap-
proachto word readingis basedon threegeneralcom-
putationalprinciples:

Distributed representation: Orthography, phonology,
andsemanticsarerepresentedby distributedpatterns
of activity such that similar words are represented
by similarpatterns.

Gradual learning of statistical structure: Knowledge
of the relationshipsamongorthography, phonology,
andsemanticsis encodedacrossconnectionweights
that are learnedgradually through repeatedexpe-
riencewith words in a way that is sensitive to the
statisticalstructureof eachmapping.

Interactivity in processing: Mapping among orthogra-
phy, phonology, and semanticsis accomplished
throughthe simultaneousinteractionof many units,
suchthatfamiliarpatternsform stableattractors.

Although theseprinciples are general,the challengeis
to demonstratethat, when instantiatedin a particular
domain—singleword reading—theseprinciplesprovide
important insights into the patternsof normal and im-
pairedcognitive behavior. The currentchapterreviews a
seriesof computationalsimulationsof wordreadingbased

on the framework depictedin Figure1. It thenpresents
a new simulation that addresssomelimitations of this
work, relatingto sequentialprocessingandeffectsof or-
thographiclengthon thenaminglatenciesof bothnormal
anddyslexic readers.Thesimulationgeneratessequential
phonologicaloutputin responseto written input andhas
the ability to refixatethe input whenencounteringdiffi-
culty. Thenormalmodelreadsbothwordsandnonwords
accurately, andexhibits an effect of orthographiclength
anda frequency-by-consistency interactionin its naming
latencies.Whensubjectto peripheraldamage,themodel
exhibits an increasedlength effect which interactswith
word frequency, characteristicof letter-by-letter reading
in pure alexia. Although the model is far from a fully
adequateaccountof all the relevant phenomena,it sug-
gestshow connectionistmodelsmaybeextendedto pro-
videdeeperinsightinto sequentialprocessesin reading.

2 Background

2.1 Skilled Oral Reading

Thedistributedconnectionistframework for wordreading
depictedin Figure1 reflectsaradicaldeparturefromtradi-
tional theorizingaboutlexical processing,particularlyin
twoways.First,thereisnothingin thestructureof thesys-
temthat correspondsto individual wordsper se, suchas
a lexical entry, localistword unit (McClelland& Rumel-
hart,1981)or “logogen” (Morton, 1969). Rather, words
aredistinguishedfrom nonwordsonly by functionalprop-
ertiesof the system—theway in which particularortho-
graphic,phonological,and semanticpatternsof activity
interact (also seePlaut, 1997; Van Ordenet al., 1990).
Second,thereareno separatemechanismsfor lexical and
sublexical processing(cf. Coltheartet al., 1993). Rather,
all partsof the systemparticipatein processingall types
of input,although,of course,thecontributionsof different
partsmaybemoreor lessimportantfor differentinputs.

In supportof the generalframework, Seidenberg and
McClelland (1989) trained a connectionistnetwork to
map from the orthographyof about3000 monosyllabic
English words—both regular and exception—to their
phonology. Thenetwork correspondedto thebottompor-
tion of the framework in Figure 1 (referred to as the
phonological pathway). After training, the network pro-
nouncednearlyall of thewordscorrectly, includingmost
exceptionwords. It also exhibited the standardempir-
ical patternof an interactionof frequency and consis-
tency in naminglatency (see,e.g.,Taraban& McClelland,
1987) when its real-valuedaccuracy in generatinga re-
sponsewastakenasa proxy for responsetime. However,
the model was much worsethan skilled readersat pro-
nouncingorthographicallylegal nonwords(Besner, Twil-
ley, McCann, & Seergobin, 1990) and at lexical deci-
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sion undersomeconditions(Besneret al., 1990;Fera&
Besner, 1992). Thus, the model failed to refute tradi-
tional claims that localist, word-specificrepresentations
and separatemechanismsare necessaryto accountfor
skilled reading.

Morerecently, Plaut,McClelland,Seidenberg, andPat-
terson(1996, also seeSeidenberg, Plaut, Petersen,Mc-
Clelland,& McRae,1994)haveshown thatthelimitations
of theSeidenberg andMcClellandmodelin pronouncing
nonwordsstemnotfromany generallimitation in theabil-
ities of connectionistnetworks in quasi-regular domains
(as suggestedby, e.g.,Coltheartet al., 1993), but from
its useof poorly structuredorthographicand phonolog-
ical representations.The original simulationusedrep-
resentationsbasedon context-sensitive triples of letters
or phonemicfeatures. When more appropriatelystruc-
turedrepresentationsareused—basedon graphemesand
phonemesand embodyingphonotacticand graphotactic
constraints—network implementationsof the phonolog-
ical pathway can learn to pronounceregular words, ex-
ceptionwords,andnonwordsaswell asskilled readers.
Moreover, the networks exhibit the empiricalfrequency-
by-consistency interactionpatternwhentrainedon actual
word frequencies.This remainstrue if naminglatencies
aremodeleddirectly by the settling time of a recurrent,
attractornetwork (seeFigure2).

Plautet al. (1996)alsoofferedamathematicalanalysis
of thecritical factorsthatgovern why thenetworks (and,
by hypothesis,subjects)behave as they do. The analy-
sis wasbasedon a network that, while simpler thanthe
actualsimulations—ithadno hiddenunitsandemployed
Hebbianlearning—retainedmany of theessentialcharac-
teristicsof the moregeneralframework (e.g.,distributed
representationsandstructure-sensitivelearning).For this
simplified network, it waspossibleto derive an analytic
expressionfor how the responseof the network to any
input (test)patterndependson its experiencewith every
patternon which the network is trained,asa function of
its frequency of training, its similarity with the testpat-
tern,andtheconsistency of its outputwith thatof thetest

pattern.Specifically, theresponses� t �j of any outputunit j
to agiventestpatternt is givenby

s� t �j � σ

�
F � t �! ∑

f

F � f �#" � f t �%$ ∑
e

F � e�&" � et �(' (1)

in whichthestandardsmooth,non-linearsigmoidalinput-
outputfunction for eachunit, σ )+*-, , is appliedto the sum
of threeterms: (1) the cumulative frequency of training
on thepatternt itself, F � t � ; (2) thesumof thefrequencies
F � f � of the friendsof patternt (similar patternstrainedto
producethe sameresponsefor unit j), eachweightedby
its similarity (overlap)with t, " � f t � ; and(3) minusthesum
of thefrequenciesF � e� of theenemiesof patternt (similar
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Figure 2: (a) The frequency-by-consistency interaction
exhibited in the settlingtime of anattractornetwork im-
plementationof the phonologicalpathway in pronounc-
ing wordsof varying frequency andspelling-soundcon-
sistency (Plautet al., 1996,Simulation3); and(b) its ex-
planationin termsof additive contributionsof frequency
andconsistency subjectto anasymptoticactivationfunc-
tion (only thetop of which is shown).

3



Plaut Word ReadingandAcquiredDyslexia

patternstrainedto producethe oppositeresponse),each
weightedby its similarity to t, " � et � .

Many of the basic phenomenain word readingcan
be seenas natural consequencesof adherenceto this
frequency-consistencyequation.Factorsthat increasethe
summedinput to units (e.g., word frequency, spelling-
soundconsistency) improve performanceasmeasuredby
namingaccuracy and/or latency, but their contributions
aresubjectto “diminishing returns”dueto theasymptotic
natureof the activation function (seeFigure 2b). As a
result,performanceon stimuli thatarestrongin onefac-
tor is relatively insensitive to variation in other factors.
Thus, regular wordsshow little effect of frequency, and
high-frequency words show little effect of consistency,
giving rise to thestandardpatternof interactionbetween
frequency andconsistency, in which the namingof low-
frequency exceptionwordsis disproportionatelyslow or
inaccurate.

2.2 Surface Dyslexia

Although implementationsof the phonologicalpathway
on its own canlearn to pronouncewordsandnonwords
aswell asskilled readers,a centralaspectof Plautet al.’s
(1996) generaltheory is that skilled readingmore typi-
cally requiresthe combinedsupportof both the seman-
tic andphonologicalpathways,andthat individualsmay
differ in the relative competenceof eachpathway. A
considerationof semanticsis particularly important in
the context of accountingfor a patternof readingim-
pairmentknown assurfacedyslexia (seePatterson,Colt-
heart, & Marshall, 1985), which typically arisesfrom
damageto the left temporallobe. Surfacedyslexic pa-
tientsreadnonwordsandregular wordswith normalac-
curacy andlatency, but exhibit aninteractionof frequency
andconsistency in word readingaccuracy, suchthat low-
frequency exceptionwordsarepronounceddisproportion-
ately poorly, often eliciting a pronunciationconsistent
with morestandardspelling-soundcorrespondences(e.g.,
SEW readas“sue,” termeda regularizationerror).

The framework for lexical processingdepictedin Fig-
ure 1 (andthe associatedcomputationalprinciples)pro-
videsanaccountof surfacedyslexia basedon therelative
contributionsof thesemanticandphonologicalpathways
in oral reading.At anabstractlevel, giventhatphonolog-
ical unitssimply sumtheir inputsfrom thetwo pathways,
theinfluenceof thesemanticpathwaycanbeincludedin a
straightforwardmannerby addinganadditionalterm,S� t � ,
to the summedinput in Equation1. Furthermore,if this
term is assumedto increasewith imageability, the equa-
tion producesthethree-wayinteractionof frequency, con-
sistency, andimageabilityfoundby Strain,Patterson,and
Seidenberg (1995). When formulatedexplicitly in con-
nectionistterms,however, this integrationhasimportant

implicationsfor the natureof learning in the two path-
ways. To the extent that the semanticpathway reduces
performanceerror during training by contributing to the
correct pronunciationof words, the phonologicalpath-
way will experiencelesspressureto learn to pronounce
all of the wordsby itself. Rather, this pathway will tend
to learnbestthosewordshigh in frequency and/orcon-
sistency; on its own it may never masterlow-frequency
exceptionwordscompletely. On this account,thecombi-
nationof thesemanticandphonologicalpathwaysis fully
competentin normal readers,but brain damagethat im-
pairs the semanticpathway revealsthe latent limitations
of anintactbut isolatedphonologicalpathway, giving rise
to surfacedyslexia.

Plaut et al. (1996) explored the viability of this ac-
countby extendingtheir simulationsof the phonological
pathway to include influencesfrom a putative semantic
pathway. They approximatedthe contribution that a se-
manticpathwaywouldmake to oral readingby providing
the output(phoneme)units of the phonologicalpathway
with external input that pushedthe activationsof these
unitstowardsthecorrectpronunciationof eachword dur-
ing training. Plautandcolleaguesfound that, indeed,a
phonologicalpathway trained in the context of support
from semanticsexhibited the centralphenomenaof sur-
facedyslexia whenthecontribution of semanticswasre-
moved (seeFigure3). Moreover, individual differences
in the severity of surfacedyslexia could arise,not only
from differencesin the amountof semanticdamage,but
alsofrom premorbiddifferencesin the division of labor
betweenthesemanticandphonologicalpathways(Plaut,
1997).Thus,thefew patientsexhibiting mild to moderate
semanticimpairmentswithoutconcomitantregularization
errors(DRN, Cipolotti & Warrington,1995;DC, Lambon
Ralph,Ellis, & Franklin,1995)mayhave, for variousrea-
sons,readingsystemswith relativelyweakrelianceonthe
semanticpathway.

2.3 Deep and Phonological Dyslexia

Patientswith deepdyslexia (seeColtheart,Patterson,&
Marshall, 1980) have reading impairmentsthat are in
many ways oppositeto thosewith surfacedyslexia, in
that they appearto read almost entirely via semantics.
Deepdyslexic patientsare thoughtto have severe dam-
ageto the phonologicalpathway, as evidencedby their
virtual inability to readeven the simplestof pronounce-
ablenonwords. They also have impairmentsin reading
words that suggestadditionalpartial damageto the se-
mantic pathway. In particular, the hallmark symptom
of deep dyslexia is the occurrenceof semanticerrors
in oral reading(e.g., readingCAT as “dog”). Interest-
ingly, thesesemanticerrorsco-occurwith purevisualer-
rors (e.g., CAT

� “cot”), mixed visual-and-semanticer-
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Figure 3: Performanceof two surface dyslexic pa-
tients(MP, Behrmann& Bub,1992;Bub, Cancelliere,&
Kertesz,1985; andKT, McCarthy& Warrington,1986)
andthe Plautet al. (1996)network for two levels of se-
mantic impairment. Correct performanceis given for
Tarabanand McClelland’s (1987) high-frequency (HF)
and low-frequency (LF) regular consistentwords (Reg)
andexceptionwords(Exc),andfor Glushko’s(1979)non-
words. “Reg’s” is the approximatepercentageof errors
on theexceptionwordsthatareregularizations.Adapted
from Plautetal. (1996).

rors (e.g., CAT
� “rat”), andeven mediatedvisual-then-

semanticerrors(e.g.,SYMPATHY
� “orchestra”,presum-

ably via symphony). Furthermore,correctperformance
dependson part-of-speech(nouns > adjectives > verbs> functionwords)andconcretenessor imageability(con-
crete,imageablewords > abstract,lessimageablewords).
Finally, differencesacrosspatientsin written andspoken
comprehension,andin thedistributionof errortypes,sug-
geststhatthesecondarydamageto thesemanticpathway
may occurbefore,within, or after semantics(Shallice&
Warrington,1980).

Deepdyslexia is closelyrelatedto anothertype of ac-
quireddyslexia—so-calledphonological dyslexia (Beau-
vois & Derouesńe, 1979), involving a selective impair-
ment in readingnonwords comparedwith words (with-
out concomitantsemanticerrors). Indeed,someauthors
(Friedman,1996;Glosser& Friedman,1990)haveargued
thatdeepdyslexia is only themostsevereform of phono-
logical dyslexia.

Hinton and Shallice (1991) reproduced the co-
occurrenceof visual, semantic,and mixed visual-and-
semanticerrorsin deepdyslexia by damaginga connec-
tionist network that mappedorthographyto semantics.
During training, the network learnedto form attractors
for 40 word meaningsacrossfive categories, such that
patternsof semanticfeaturesthatweresimilar to aknown
wordmeaningwerepulledto thatexactmeaningover the

Semantic space
?

Orthographic space
@ CAT DOG BOG

cat

dog

bog
A

CAT "dog"
"dog"BOG

Figure4: A depictionof theattractorlandscapefor a net-
work thatmapsorthographyto semantics,andhow dam-
ageto thenetwork candistorttheattractors(dashedoval)
in away thatgivesriseto bothsemanticerrors(e.g.,CAT� “dog”) andvisualerrors(e.g.,BOG

� “dog”). Adapted
from PlautandShallice(1993).

courseof settling. Whenthe network wasdamaged,the
initial semanticactivity causedby an input would occa-
sionally fall within a neighboringattractorbasin,giving
riseto anerrorresponse.Theseerrorswereoftenseman-
tically relatedto the stimulusbecausewordswith simi-
lar meaningscorrespondto nearbyattractorsin semantic
space.Thedamagednetwork alsoproducedvisualerrors
dueto its inherentbiastowardssimilarity: visually simi-
lar wordstendto producesimilarinitial semanticpatterns,
which canleadto a visualerrorif thebasinsaredistorted
by damage(seeFigure4).

Plaut and Shallice(1993) extendedtheseinitial find-
ings in a numberof ways. They establishedthe gener-
ality of the co-occurrenceof error typesacrossa wide
rangeof simulations,showing that it doesnot dependon
specific characteristicsof the network architecture,the
learningprocedure,or the way responsesare generated
from semanticactivity. A particularly relevant simula-
tion in this regardinvolvedan implementationof the full
semanticpathway—mappingorthographyto phonology
via semantics—usingadeterministicBoltzmannMachine
(Hinton, 1989b;Peterson& Anderson,1987). Lesions
throughoutthe network gave rise to both visual andse-
manticerrors,with lesionsprior to semanticsproducinga
biastowardsvisualerrorsandlesionsaftersemanticspro-
ducinga biastowardssemanticerrors.Thus,thenetwork
replicatedboth the qualitative similarity andquantitative
differencesamongdeepdyslexic patients. The network
alsoexhibited a numberof other characteristicsof deep
dyslexia not consideredby Hinton and Shallice(1991),
including the occurrenceof visual-then-semanticerrors,
greaterconfidencein visual as comparedwith semantic
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errors,andrelatively preserved lexical decisionwith im-
pairednaming.

PlautandShallicecarriedout additionalsimulationsto
addressthe influenceof concretenesson thereadingper-
formanceof deepdyslexic patients.Another full imple-
mentationof the semanticpathway was trainedto pro-
nouncea new set of words consistingof both concrete
and abstractwords. Concretewords were assignedfar
moresemanticfeaturesthanwereabstractwords,under
the assumptionthat the semanticrepresentationsof con-
cretewordsarelessdependenton the contexts in which
they occur (Jones,1985; Saffran, Bogyo, Schwartz, &
Marin, 1980; Schwanenflugel,1991). As a result, the
network developedstrongerattractorsfor concretethan
abstractwordsduring training, giving rise to betterper-
formancein readingconcretewordsundermosttypesof
damage,as observed in deepdyslexia (seeFigure 5a).
Surprisingly, severe damageto connectionsimplement-
ing the attractorsat the semanticlevel producedthe op-
positepattern,in which thenetwork readabstract words
betterthanconcretewords(seeFigure5b). Thispatternof
performanceis reminiscentof CAV, thesingle,enigmatic
patientwith concreteword dyslexia (Warrington,1981).
Thedoubledissociationbetweenreadingconcreteversus
abstractwords in patientsis often interpretedas imply-
ing that thereareseparatemoduleswithin the cognitive
systemfor concreteand abstractwords. The Plaut and
Shallicesimulationdemonstratesthatsucharadicalinter-
pretationis unnecessary:thedoubledissociationcanarise
from damageto differentpartsof adistributednetwork, in
whichpartsprocessbothtypesof itemsbut developsome-
whatdifferentfunctionalspecializationsthroughlearning
(seePlaut,1995,for furtherresultsanddiscussion).

Taken together, the modeling work describedabove
provides strongsupportfor a connectionistapproachto
normalandimpairedword reading,embodyingthecom-
putationalprinciples outlined in the Introduction: dis-
tributed representation,gradual learning of statistical
structure,and interactivity in processing. There have,
however, beenrecentempiricalchallengesto thespecific
modelsin particular, andtheframework in general,which
ultimately needto be addressedif the approachis to re-
mainviableasanaccountof humanperformance.A num-
berof theserelateto theinfluenceof orthographiclength
onthenaminglatenciesof bothnormalanddyslexic read-
ers.

3 Current Challenges: Length Ef-
fects

An aspectof theSeidenberg andMcClelland(1989)and
Plaut et al. (1996) modelsthat hascontributedsubstan-
tially to their theoreticalimpactis that,becausethey were
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Figure5: Percentcorrectperformanceon concretever-
susabstractwordsof the PlautandShallice(1993)sim-
ulationafter (a) 1000lesionsof 20%of orthographic-to-
intermediateconnectionsand(b) 1000lesionsof 70%of
semantic-to-cleanupconnections.Theradiusof eachcir-
cle is proportionalto the numberof lesionsyielding the
performancelevelsindicatedby thepositionof thecircle.
The diagonallines correspondto equallevels of perfor-
manceonconcreteandabstractwords.Theadvantagefor
concretewordsin (a)correspondsto thefindingsfor deep
dyslexia (Coltheartet al., 1980),whereasthe advantage
for abstractwords in (b) correspondsto the findingsfor
concrete-worddyslexia (Warrington,1981).
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trainedon a sufficiently extensive corpusof words,their
performancecanbecompareddirectlywith thatof human
subjectson the very samestimuli. Thesecomparisons
have largely beensuccessfullyat the level of accounting
for the effectsof factorialmanipulations(e.g.,word fre-
quency, spelling-soundconsistency). Morerecently, how-
ever, themodelshavebeenfoundto belackingwhencom-
paredwith humanperformanceon an item-by-itemba-
sis.For instance,SpielerandBalota(1997)correlatedthe
meannaminglatenciesof 31subjectsnaming2820words
with themodels’latenciesfor thesamewords,andfound
that the modelsaccountedfor only about3–10%of the
varianceassociatedwith individualitems.By contrast,the
combinationof thetraditionalmeasuresof log frequency,
orthographiclength,andorthographicneighborhoodsize
(Coltheart’s N) collectively accountedfor 21.7%of the
variance;includinganencodingof phoneticpropertiesof
theonsetphonemeincreasedthis figureto 43.1%.

In response,Seidenberg and Plaut (1998) carriedout
additional analyseswith the Spieler and Balota (1997)
datasetaswell asanotherlarge namingdataset(Seiden-
berg & Waters,1989). They found that the modelsdid
not accountwell for effects of orthographiclength, but
whenthemodelmeasuresandlengthwereenteredfirst in
a stepwiseregression,therewaslittle remainingvariance
accountedfor by log frequency andorthographicneigh-
borhood.Specifically, eachtraditionalvariableaccounted
for lessthan1.7%of theremainingvariancein all condi-
tions, exceptthat log frequency still accountedfor 4.8%
of thevariancein theSpielerandBalotadataset(but only
0.25%in theotherdataset)afterlengthandthePlautetal.
(1996)RTswerepartialedout. Thusthemodelsprovidea
reasonablygood(aswell asmechanistic)accountof the
influenceof thesetraditional factorson namingperfor-
mance. With regard to orthographiclength, Seidenberg
andPlautarguedthat the effectsof this factorweredue
largely to visual andarticulatoryfactorsoutsidethe do-
mainof theexistingmodels.1

More recently, Chris Kello (personalcommunication,
January1998)hasprovidedsomesupportfor this claim.
He hypothesizedthat someof the observed lengtheffect
might be dueto the fact that longermonosyllabicwords
aremorelikely to have complex onsetconsonantclusters
(e.g., ��E�FG� , ��HJIKF�� ), andthe reducedacousticamplitudeat
thebeginningof suchclustersintroducesdelayin tripping
astandardvoicekey. For example,avoicekey might reg-
isterthe ��FG� in bothRING andSTRING, yieldinganoverly

1In their reply to Seidenberg andPlaut (1998),Balota andSpieler
(1998)questionwhetherlengtheffectsfall outsidethescopeof themod-
els given that Plaut et al. (1996, p. 85) actuallydemonstrateda small
but reliableeffectof lengthonthesettlingtimesof theirattractormodel.
However, the fact that themodelshows somesensitivity to lengthdoes
notentailthatit shouldbeexpectedto accountfor all or evenmostof the
effectsof lengthonperformance;theunderlyingtheorymaystill ascribe
lengtheffectsto other(unimplemented)partsof thereadingsystem.

long RT in thelattercase(extendedby roughly thedura-
tion of the ��HLI�� ). Kello repeatedthe SpielerandBalota
(1997)stepwiseregressionanalysisbut useda moreso-
phisticatedencodingof the phoneticpropertiesof word
onsets,including the presenceof certainconsonantclus-
ters.He foundthat,comparedwith theuseof Spielerand
Balota’s encoding,thenew encodingreducedtheamount
of residualvarianceaccountedfor by orthographiclength
by well over half, from 7.5% to 3.3%. Theseresultsin-
dicatethatasizableamountof theeffectsof orthographic
lengthcanbeaccountedfor by articulatoryonsetcharac-
teristics.

Although articulatoryfactorsmay contribute substan-
tially to length effects, they cannotbe the whole story.
Recently, Weekes(1997)hasdemonstrateddifferentialef-
fects of length for words versusnonwords matchedfor
onsetcharacteristics.Specifically, using3–6letterwords
and nonwords, Weekes found reliable length effects for
nonwords and for low- but not high-frequency words.
When he partialedout orthographicneighborhoodsize,
thelengtheffectwaseliminatedfor wordsbut not for non-
words. Weekesarguedthat thesefindingsposeproblems
for any accountin which words and nonwords are pro-
cessedby asinglemechanism.

Finally, lengtheffectsalsoplay a prominentrole in the
analysisof acquiredreadingimpairments,particularlyin
the context of the letter-by-letter(LBL) readingof pure
alexic patients(Dejerine,1892)andsomenonfluentsur-
facedyslexic patients(e.g.,Patterson& Kay, 1982). Al-
thoughthe accuracy of thesepatientscanbe quite high,
their naming latenciesshow an abnormallylarge word
lengtheffect, sometimeson theorderof 1–3secondsper
letter (cf. 5–50 msec/letterfor normal readers;Hender-
son,1982). One accountof suchpatients(Patterson&
Kay, 1982)is that they have a peripheraldeficit thatpre-
ventsadequateactivationof letter representationsin par-
allel; they thusmustresortto a compensatorystrategy of
recognizingletterssequentially.

Thereis, in fact,considerableindependentevidencefor
peripheralimpairmentsin LBL readers(seeBehrmann,
Nelson,& Sekuler, 1998a,for review). Ontheotherhand,
thereis alsoevidencefor theinfluenceof lexical/semantic
factorsonLBL readingperformance.Therearetwo forms
of this latter influence.First, whenpresentedwith words
too briefly to allow overt naming,someLBL readerscan
nonethelessperform lexical decisionand semanticcate-
gorizationstasksabove chance(Coslett& Saffran,1989;
Shallice & Saffran, 1986). Quite apart from this type
of “covert” reading,LBL readersalso show lexical ef-
fects on their letter-by-letter readinglatencies. For ex-
ample,Behrmann,Plaut,andNelson(1998b)presentdata
on seven LBL readersof varying severity, showing that
themagnitudesof their lengtheffectsinteractedbothwith
frequency andwith imageability. Moreover, theseinter-
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actionswere modulatedby severity of the impairment,
suchthat the most severe patientsshowed the strongest
lexical/semanticeffects. Behrmannandcolleaguesargue
that thesehigher-level effectsin LBL readingareconsis-
tentwith aperipheralimpairmentgiventheinteractivena-
tureof processingwith thereadingsystem:weakened(se-
quential)letteractivationsupportspartiallexical/semantic
activation that accumulatesover time and feedsback to
facilitatesubsequentletterprocessing.They alsopropose
that the sequentialprocessingin LBL readingis not an
abnormalstrategy employed only following brain dam-
age,but is the manifestationof the normalreadingstrat-
egy of makingadditionalfixationswhenencounteringdif-
ficulty in readingtext (Just& Carpenter, 1987;Reichle,
Pollatsek,& Rayner, 1998). For example,in orderto en-
hancestimulusquality, normalsubjectsmake morefixa-
tionswithin long comparedwith shortwords. LBL read-
ersalsofixatemorefrequently;in fact,giventheverypoor
quality of thevisual input, they fixatealmostevery letter
(Behrmann,Barton,Shomstein,& Black,1999).

In summary, theeffectsof orthographiclengthonnam-
ing latency, both in normalandbrain-damagedsubjects,
placeimportantconstraintson theoriesof word reading,
and existing distributed modelsdo not provide an ade-
quateaccountof theseeffects.A fully adequatemodelof
lengtheffectsin readingwould needto incorporatecon-
siderablydetailedperceptualandarticulatoryprocessesin
additionto the morecentralprocessesrelatingorthogra-
phy, phonology, andsemantics.Theintentof thesimula-
tion describedin the following sectionis not so muchto
attemptsuchacomprehensiveaccount,but ratherto begin
anexplorationof thekindsof networksandprocessesthat
mightprovide deeperinsightinto lengtheffects.

4 Simulation

4.1 Method

A simplerecurrentnetwork (Elman,1990)wastrainedto
producea sequenceof phonemesas output when given
a stringof position-specificlettersasinput. The training
corpusconsistedof the 2998monosyllabicwords in the
Plaut et al. (1996) corpus. The architectureof the net-
work is shown in Figure6. Thereare26 letter unitsand
a “blank” unit at eachof 10 positions.Thethird position
from theleft, indicatedby thedarkrectanglein thefigure,
correspondsto thepointof fixation. These270letterunits
arefully connectedto 100hiddenunitswhich,in turn,are
fully connectedto 36 phonemeunits.2 The hiddenunits
also receive input from the previous statesof phoneme

2The encodingof wordsand nonwordsas sequencesof phonemes
wasbasedon the phonologicalrepresentationemployedby Plaut and
McClelland(1993),which differsslightly from thatusedby Plautet al.
(1996).

units. In addition,thereis a fourthgroupof positionunits,
with connectionsboth to andfrom the hiddenunits, that
the network usesto keeptrack of whereit is in the let-
ter string as it is producingthe appropriatesequenceof
phonemes,analogousto a focusof attention.Two copies
of thepositionunitsandthephonemeunitsareshown in
thefiguresimply to illustratetheirbehavior over time. Fi-
nally, thereis a“done”outputunit thatthenetwork usesto
indicatethata pronunciationis complete.Includingbias
connections(equivalentto connectionsfrom anadditional
unit with a fixed stateof 1), the network had a total of
45,945connectionsthat were randomizeduniformly be-
tween M 1 N 0 beforetraining.3

In understandinghow the network wastrained,it will
help to considerfirst its operationafter it hasachieveda
reasonablelevel of proficiency at its task. First, a word
is selectedfrom the training corpusaccordingto a loga-
rithmic functionof its frequency of occurrence(Kučera&
Francis,1967). Its string of lettersis presentedwith the
first letter at fixation,4 by activating the appropriatelet-
terunit ateachcorrespondingposition,andtheblankunit
at all other positions. Position information for internal
lettersis assumedto be somewhat inaccurate(see,e.g.,
Mozer, 1983),sothatthesameletterunitsat neighboring
internalpositionsare also activatedslightly (to 0.3). In
Figure6, thegrey regionsfor letterunits indicatetheac-
tivationsfor theword BAY whenfixating the B. Initially,
the position unit correspondingto fixation (numbered0
by convention)is activeandall othersareinactive,andall
phonemeunits are inactive. (In the figure, the statesof
positionandphonemeunitsshow thenetwork attempting
AY

� /A/ after having generatedB � /b/.) Hidden unit
statesareinitialized to 0.2 at thebeginningof processing
theword.

The network thencomputesnew statesfor the hidden
units,phonemeunits,andpositionunits.Thenetwork has
two tasks: 1) to activate the phonemecorrespondingto
the currentgrapheme,and 2) to activate the position of
thenext graphemein thestring(or, if theendof thestring
is reached,thepositionof theadjacentblank). For exam-
ple, whenattendingto the letter B at fixation in BAY, the
network mustactivatethe ��OP� unit andpositionunit 1 (the
positionof AY in theinput). Specifically, thetargetactiva-
tionsfor thephonemeunitsconsistof aonefor thecorrect
currentphonemeandzeroselsewhere,andthetargetsfor

3Given the compositionof the training corpusand all possiblere-
fixations,62 of the letter units would never be activatedduring train-
ing. Therefore,to reducethecomputationaldemandsof thesimulation
slightly, all 6200outgoingconnectionsfrom theseunitswereremoved,
leaving anactualtotal of 39,745connectionsin thenetwork.

4A more empirically accuratepositioning would have placedthe
stringsothatfixation falls at or just to theleft of thecenterof theword,
correspondingto the “optimal” or “convenient” viewing position (see
O’Regan,1981). This distinctionhasno functional consequencesfor
thecurrentmodel,however, asit doesnot incorporatevariationin visual
acuitywith eccentricity.
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Figure6: Thenetwork architecturefor therefixationnetwork. Thearrows indicatedfull connectivity betweengroups
of units.Therecurrentconnectionsamongthehiddenunitsonly convey informationaboutthelasttimestep.Thegrey
areasin theinputandoutputunitsareintendedto depicttheiractivitiesatanintermediatepoint in processingtheword
BAY, aftertheB

� /b/ hasbeenpronounced(with no refixation)andtheAY
� /A/ is beingattempted.

the positionunits consistof a onefor the positionof the
next grapheme/blankin thestringandzeroselsewhere.To
theextentthattheactivationsover thephonemeandposi-
tion unitsareinaccurate(i.e.,notwithin 0.2of their target
values),erroris injectedandback-propagatedthroughthe
network. Performanceerror wasmeasuredby the cross-
entropy(seeHinton,1989a)betweenthecorrectandtarget
activations.

Assumingthat the network succeedsat generatingthe
correct phonemeand position, this information is then
usedto guidetheproductionof thenext phonemeandpo-
sition. For this purpose,the correctphonemeunit hadto
beactivatedabove 0.7andall othershadto bebelow 0.3,
and the correctpositionunit hadto be moreactive than
any otherpositionunit. (During testing,this criterionap-
plies to the mostactive phonemeunit ratherthanto the
“correct” unit.) As shown in Figure6 for BAY, position
unit 1 andthephoneme��OP� arenow active,theletterinput
remainsthesame,andthenetwork mustactivate � A � , the
phonemecorrespondingto the indicatedgraphemeAY);
positionunit 3, correspondingto the blank following the
string;andthe“done” unit, indicatingacompletepronun-
ciation. In general,whenpronouncinga letterstring, the
network is trainedto activatethe sequenceof phonemes
correspondingto its pronunciation,while simultaneously
keepingtrack of the position of the graphemeit is cur-

rentlyworkingon.
If, in pronouncinga letter string, every phonemeand

positionis generatedcorrectly, theactivationsover thelet-
ter units remainfixed. If, however, the network fails at
generatingthe correctphonemeor next positionat some
point, it refixatesthe input stringandtries again. It does
this by making the equivalentof a rightward saccadeto
fixate theproblematicgrapheme,usingthepositionunits
asa specificationof its positionrelative to fixation. This
positioninformationwasgeneratedover thepositionunits
ontheprevioustimestep,andthusisavailableto guidethe
appropriatesaccade.5 Theactualsaccadeis implemented
by shifting the input activation of the letter units to the
left by the specifiedamount,and resettingposition unit
0 to beactive. Following this, the network tries againto
pronouncethe (now fixated)grapheme,and thenthe re-
mainderof theinput string.

In general,the network pronouncesas much of the
static input as it canuntil it runs into trouble, thensac-
cadesto that part of the input andcontinues.Note that,

5If thenetworkfails onthefirst graphemeof astring,or immediately
after refixating,the target for the positionunits is usedduring training
asthe locationof the next fixation; during testing,the mostactive po-
sition unit is used.Also notethat thenetwork’s rightwardsaccadesare
differentthantheregressive (leftward)saccadesthatsubjectssometimes
makewhenencounteringdifficult text (seeJust& Carpenter, 1987).The
currentnetworkcannotmakeregressive saccades.
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earlyon in training,thenetwork repeatedlyfailsatgener-
atingcorrectoutput,andso is constantlyrefixating. This
meansthat essentiallyall of its training experiencecon-
sistsof pronouncinggraphemes(in context) at fixation.
As thenetwork learnsto pronouncethesecorrectly, it be-
gins to attemptto pronouncethe graphemesin the near
(right) peripherywithoutrefixating.If it fails, it will make
a saccadeanduseits moreextensive experienceat fixa-
tion. Gradually, however, it will learnto pronouncethese
adjacentgraphemescorrectly, andwill go on to attempt
even more peripheralones. In this way, the network’s
competenceextendsgraduallyfrom fixation rightwardto
larger andlarger portionsof input strings,makingfewer
and fewer fixations per word as a result. However, the
network can always fall back on its more extensive ex-
perienceat fixation whenever it encountersdifficulty. It
is perhapsworth noting in this context that,althoughthe
network wastrainedonly onmonosyllabicwordsfor con-
venience,it would beentirely straightforwardto apply it
to pronouncingpolysyllabicwordsof arbitrarylength.

To summarize,asthenetwork is trainedto producethe
appropriatesequenceof phonemesfor a letter string, it
is alsotrainedto maintaina representationof its current
positionwithin thestring. Thenetwork usesthis position
signalto refixatea peripheralportionof theinput whenit
findsthatportiondifficult to pronounce.This repositions
the input string so that the peripheralportion now falls
at the point of fixation, wherethe network hashadmore
experiencein generatingpronunciations.In this way, the
network canapply the knowledgetied to the units at the
pointof fixationto any portionof thestringthatis difficult
for thenetwork to read.

4.2 Results and Discussion

Normal Performance. The network was trained on
400,000word presentationswith a learningrateof 0.01,
momentumof 0.9, andweight decayof 0.000001. The
learningratewasthenreducedto 0.001andthe network
wastrainedon an additional50,000word presentations,
in orderto minimize the noisein the final weight values
dueto samplingerroramongtrainingexamples.The to-
tal numberof presentationsper word rangedfrom about
40 to 600, with a medianof 130. Figure7 shows, over
the courseof training, both the overall level of accuracy
in pronouncingwordsaswell asthemeannumberof fix-
ationsrequired.At the endof training, the network read
2978/2998(99.3%)of thewordscorrectly(wherehomo-
graphswereconsideredcorrectif they elicited eitherap-
propriatepronunciation).The network madean average
of 1.32fixationsperword in generatingcorrectpronunci-
ations,with 2290(76.9%)involving asinglefixation. Just
underhalf (8/20)of theerrorswereregularizationsof low-
frequency exceptionwords (e.g., BROOCH

� “brewch”,
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SIEVE
� “seeve”).

Giventhatthenetwork essentiallyhasafeedforwardar-
chitectureandoutputsonly asinglephonemeat a time, it
is not entirelyclearwhatanappropriatemeasureof nam-
ing latency shouldbe. The mostnaturalanalogueto the
onsetof acousticenergy that would trip a voice key in a
standardempirical studywould be the real-valuederror
onthefirst phoneme.Thismeasure,however, fails to take
into accountthecoarticulatoryconstraintson executinga
fluentpronunciationthatapplyfor subjectsbut not for the
model. A moreappropriate,albeit coarsemeasurein the
currentcontext is simply thenumberof fixationsrequired
to generateacorrectpronunciation.Thismeasuredirectly
reflectsthedegreeof difficulty thatthesystemexperiences
in constructingacompletepronunciation.6

Figure8 shows themeannumberof fixationsmadeby
themodelin generatingcorrectpronunciationsfor words
in the trainingcorpusasa functionof their lengthin let-
ters.Usingthismeasureasananalogueto naminglatency,
themodelshows no latenciesdifferencesbetween3- and
4-letter words (F v 1), but a steadyincreasein latency
for 4–6letterwordsandanoverall lengtheffect (F3 w 2932=
76.7,p v .001)with aslopeof 0.18fixationsperletter.

Thenetwork wastestedfor its ability to accountfor two
setsof recentfindingsconcerninglengtheffectsin normal
readers.First,asmentionedearlier, Weekes(1997)found
reliableeffectsof orthographiclengthin thenaminglaten-

6Thereis emerging evidencethatsubjectscaninitiate their articula-
tion prior to computingtheentirepronunciation of a word (Kawamoto,
Kello, Jones,& Bame,1998). Note, however, that the most difficult
aspectof mappingorthographyto phonologyin English relatesto in-
consistency in vowel pronunciations, andthe fixation measureusedin
thecurrentsimulationis sufficiently sensitive to reflectthis property.

10



Plaut Word ReadingandAcquiredDyslexia

3x 4y 5z 6{
Word Length|1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
M

ea
n 

N
um

be
r 

of
 F

ix
at

io
ns

}

Figure8: Meannumberof fixationsmadeby thenetwork
in pronouncing3–6 letter words. The y-axis scaleis the
sameasthat in Figure11 for easeof comparison.

ciesfor bothwordsandnonwords,but only thenonword
effect remainedreliablewhenorthographicneighborhood
sizewaspartialedout. In applyingthe currentmodel to
Weekes’stimuli, 24of thewordshadto beeliminatedbe-
causethey arenot in themodel’s trainingcorpus;mostof
theseareinflectedforms(e.g.,BOARDS, CALLED). Of the
remainingitems, the model correctly pronounced86/86
of thehigh-frequency words,89/90of the low-frequency
words, and 90/100of the nonwords (where4 of the 10
errors were on pseudo-inflectedforms; e.g., BRANKS,
LOAKED). A nonword pronunciationwasscoredascor-
rect if it matchedthe pronunciationof someword in the
training corpus(e.g.,GROOK pronouncedto rhymewith
BOOK; seePlautet al., 1996,for details).

Comparing4- versus6-letterstimuli, therewasa reli-
ablelengtheffectin themeannumberof fixationsmadeby
themodelin correctlypronouncinghigh-frequency words
(1.00 vs. 1.25; F1 w 34 = 7.56, p v .01), low-frequency
words (1.38 vs. 1.79; F1 w 41 = 1.82, p v .05), and non-
words(1.61 vs. 2.38; F1 w 42 = 6.55, p v .01). Whenor-
thographicneighborhoodsize (calculatedover the train-
ing corpus)wasfirst partialedout of the data,the length
effectsfor bothhigh-andlow-frequency wordswereelim-
inated(F1 w 34 v 1 andF1 w 41 = 1.43,p > .2, respectively)
whereasthelengtheffect for nonwordsremainedreliable
(F1 w 42 = 6.43, p v .05). The only discrepancy between
thesefindingandthoseof Weekes(1997)is thatthesmall
lengtheffectfor high-frequency wordswasreliablefor the
modelbut not for thehumansubjects.

The secondlength effect to which the model was
applied was the recentfinding of Rastleand Coltheart
(1998) that, among 5-letter nonwords, those with 3-
phonemepronunciations(e.g., FOOPH) producelonger
naminglatenciesthanthosewith 5-phonemepronuncia-

tions (e.g., FROLP); note that this is an effect of phono-
logical ratherthanorthographiclength. Certainaspects
of Rastleand Coltheart’s stimuli are problematicin the
current context—namely, 5 of the 24 5-phonemenon-
words are pseudo-inflected(e.g., FRULS). If theseand
thematched3-phonemenonwordsareremovedfrom the
analysis,themeannumberof fixationsmadeby themodel
in pronouncingthe 3-phonemenonwords is numerically
largerthanthatfor the5-phonemenonwords,but thedif-
ferenceis not reliable(2.95vs. 2.79,respectively; paired
t17 v 1). Thenull resultmaystemin part from thesmall
numberof comparisonsbut alsofrom thefact that,under
themodel’s phonologicalencoding,the stimuli thatRas-
tle andColtheartconsideredto have 3 phonemesactually
hada meanphonologicallengthof 3.58,asa numberof
thenonwordshave4 or even5 phonemes(e.g.,BARCH

�
/bartS/).

The network was also testedfor the standardeffects
of word frequency andspelling-soundconsistency in its
numberof fixations,usinga list of 126matchedpairsof
regular andexceptionwordsfalling into threefrequency
bands(Patterson& Hodges,1992).Thenetwork mispro-
nouncedfive of the words, producingregularizationer-
rors to four low-frequency exceptionwords—BROOCH,
SIEVE, SOOT, and SUEDE—and an irr egularization er-
ror to a low-frequency regular word—SOUR to rhyme
with POUR (seePatterson,Plaut,McClelland,Seidenberg,
Behrmann,& Hodges,1996,for empiricalevidencesup-
porting the occasionaloccurrenceof sucherrors). Fig-
ure9 showsthemeannumberof fixationsrequiredto cor-
rectly pronouncethe remainingwords, as a function of
theirfrequency andconsistency. Overall,therewasamain
effectof frequency (means:high 1.04,medium1.35,low
1.62; F2 w 241 = 22.4,p v .001)anda main effect of con-
sistency (means: regular 1.14, exception1.52; F1 w 241 =
27.5, p v .001), as well as a frequency-by-consistency
interaction,with low-frequency exceptionwords requir-
ing disproportionatelymorefixations(F2 w 241 = 7.67,p v
.001).Theseresultsarein accordwith therelevantempir-
ical findingson thenaminglatenciesof skilled readers.

At the item level, the numbersof fixations madeby
the modelwasregressedagainstthe meannaminglaten-
ciesof SpielerandBalota’s (1997)31 subjects.Over the
2812/2820wordsthatthemodelpronouncedcorrectly, its
numberof fixations accountedfor 8.8% of the variance
in the latency data(t2810 = 16.5, p v .001). This value
is muchbetterthanthat of the Plautet al. (1996)model
(3.3%)but not quite asgoodasthe Seidenberg andMc-
Clelland(1989)model(10.1%).

Finally, thenetwork wastestedfor its accuracy in pro-
nouncingthreesetsof nonwordsfrom two empiricalstud-
ies:1) 43nonwordsderivedfromregularwords(Glushko,
1979); 2) 43 nonwords derived from exception words
(Glushko, 1979);and3) 80nonwordsusedascontrolsfor
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Figure9: Meannumberof fixation requiredto produce
correct pronunciationsfor words (Patterson& Hodges,
1992)asa functionof their frequency andspelling-sound
consistency.

a set of pseudohomophones(McCann& Besner, 1987).
As before,a nonword pronunciationwasconsideredcor-
rect if it was consistentwith someword in the train-
ing corpus. Figure 10 shows the performanceof the
network on this criterion, as well as the corresponding
data for humansubjects. The network was correct on
40/43(93.0%)of theregularnonwords,41/43(95.3%)of
the exceptionnonwords,and 73/80 (91.3%)of the con-
trol nonwords. By comparison,the correspondinglevels
of performancereportedfor humansubjectswere93.8%
on regular nonwordsand95.9%on exceptionnonwords
(Glushko, 1979), and 88.6% on the control nonwords
(McCann& Besner, 1987). Moreover, in pronouncing
thesenonwords,the meannumberof fixationsproduced
by thenetwork for correctpronunciationswas1.63for the
regular nonwords,2.27 for the exceptionnonwords,and
1.92for thecontrolnonwords.Theoverall meanfor non-
words,1.94,is comparableto thevaluefor low-frequency
exceptionwords(2.00;seeFigure9). Thus,thenetwork’s
nonword readingaccuracy and latency is comparableto
thatof skilled readers.

Performance Under a Peripheral Impairment. In or-
derto modelaperipheraldeficit in letterperceptionof the
sort postulatedby Behrmann,Plaut,andNelson(1998b)
to produceLBL reading,input letteractivationswerecor-
ruptedby Gaussiannoise(SD = 0.055). Whenthis was
done,correctperformancedroppedfrom 99.3%to 90.0%
correct(averagedacross10 runsthroughthetrainingcor-
pus). Using a mediansplit on frequency, accuracy was
greateron high- versuslow-frequency words(91.7%vs.
88.7%, respectively; F1 w 2983 = 18.0, p v .001) and on
short versuslong words (e.g., 91.6%for 4-letter words
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Figure 10: Percentcorrectperformanceof the network
andof humansubjectsin pronouncingthreesetsof non-
words: regular and exceptionnonwords (N = 43 each)
from Glushko (1979), and control nonwords (N = 80)
from McCannandBesner(1987).

vs. 86.8%for 6-letterwords;F1 w 1523 = 14.1,p v .001).
It was arguedabove that numberof fixations can be

usedas a coarseapproximationto naming latency for
skilled readersbecausethis measurereflectsthe degree
of difficulty in constructinga coherentarticulatoryout-
put. Thesituationis ratherdifferentin thecontext of LBL
readingbecause,in this case,it is moreliterally true that
apronunciationis constructedincrementally. For this rea-
son,numberof fixations in the modelcanbe taken asa
moredirectanalogueof thenaminglatency of LBL read-
ers.Anotherplausiblemeasure—thetotal numberof pro-
cessingstepsrequiredby the model in generatinga pro-
nunciation,including initial attemptsand attemptsafter
refixations—givesqualitatively equivalentresults.

Amongwordspronouncedcorrectly, theaveragenum-
ber of fixationsper word increasedfrom 1.32to 2.20as
a result of the introductionof input noise. Not surpris-
ingly, this measurewasstronglyinfluencedby the length
of the word. For example,the impairedmodelmadean
averageof 2.00fixationson 4-letterwordsbut 2.97fixa-
tionson 6-letterwords(F1 w 1522 = 380.1,p v .001),corre-
spondingto aslopeof 0.49fixationsperletter. Themodel
alsomadefewer fixationson high- versuslow-frequency
words(means2.10vs. 2.30,respectively; F1 w 2973 = 50.5,
p v .001).Finally, andmostimportantfor theBehrmann,
Plaut,andNelson(1998b)accountof LBL reading,there
was a clear interactionof frequency and length. This
wasestablishedby comparingperformanceon setsof 4-
and 6-letter words matchedfor frequency (N = 100 for
eachcell). The averagenumberof fixations per word
for thesestimuli is shown in Figure 11. In addition to
main effects of frequency (F1 w 396 = 7.13, p v .01) and
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Figure11: Meannumberof fixationsmadeby themodel
in pronouncing4- and6-letterwordsasafunctionof their
frequency.

length (F1 w 396 = 186.6, p v .001), frequency interacted
with length suchthat the effect of frequency was larger
for 6- than for 4-letter words (F1 w 396 = 4.96, p v .05).
Thus,underperipheraldamage,thenetwork exhibitedthe
hallmarkword length effect characteristicof LBL read-
ing, combinedwith theappropriatehigher-level effects:a
word frequency effect which was greaterfor long com-
paredwith shortwords.7

In summary, a simplerecurrentnetwork waspresented
with words as letter stringsover position-specificunits
andwastrainedto generatethepronunciationof theword
in theformof asequenceof phonemes.Themodelhadthe
ability to refixatetheinput stringwhenencounteringdif-
ficulty. Thenetwork learnedto pronouncecorrectlyvirtu-
ally all of the 2998-word trainingcorpus,including both
regularandexceptionwords,andalsowascapableof pro-
nouncingnonwordsaswell asskilled readers.Moreover,
if meannumberof fixationswastakenasananalogueof
skillednaminglatency, themodelexhibitedalengtheffect
as well as the standardfrequency-by-consistency inter-
actionobserved in empiricalstudies. Finally, peripheral
damageto themodel,in theform of corruptedletteracti-
vations,gave riseto thehallmarkcharacteristicsof letter-
by-letterreading,includinganincreasedlengtheffectthat
interactswith lexical variables(e.g.,word frequency).

7Giventhatthenetworkcontainsnosemanticrepresentations,it can-
not beusedto accountfor the effectsof imageabilityon LBL reading,
nor therelatively preservedlexical decisionandsemanticcategorization
performanceof thesepatients.

5 General Discussion

Connectionistmodelinghasmadeimportantcontributions
to a wide range of domainswithin cognitive science.
Word reading,in particular, hasreceivedconsiderableat-
tention becauseit is a highly learnedskill that involves
therapid,onlineinteractionof anumberof sourcesof in-
formationin anintegratedfashion.Thereis alsoawealth
of detailedempiricaldataon normal readingacquisition
and skilled performance,as well as patternsof reading
impairmentsin developmentalandacquireddyslexia, that
play an essentialrole in evaluatingandconstrainingex-
plicit computationalmodels. The current chaptercon-
tributesto the developmentof a connectionisttheory of
normal and impairedword readingbasedon threegen-
eral computationalprinciples: distributedrepresentation,
graduallearningof statisticalstructure,and interactivity
in processing.This endeavor hasled to a numberof im-
portantinsightsconcerningthenatureof thereadingsys-
tem,bothin normaloperationandwhenimpairedby brain
damage.Theseinsightsdonottypically follow from alter-
native theoreticalframeworks,althoughversionsof them
canbe incorporatedinto theseframeworks in a posthoc
manner. Moreover, many of theinsightshaveimplications
whichextendbeyondthespecificdomainof wordreading.
Four of theseareenumeratedanddiscussedbelow.

1. Theapparentdichotomybetween“regular” ver-
sus “exception” items is a false one; rather,
items vary along a continuum of consistency
(Glushko, 1979), and a single mechanismcan
learn to processall typesof itemsandyet also
generalizeeffectively to novel items.

This point wasmadefirst by RumelhartandMcClelland
(1986)in thedomainof inflectionalmorphology, andlater
by Seidenberg andMcClelland (1989) in the domainof
word reading. The impact of theseearly modelswas,
however, underminedto a certainextentby limitationsin
themodels’performance,particularlywith respectto gen-
eralization.In the domainof word reading,theselimita-
tionswereaddressedin subsequentmodelingwork (Plaut
et al., 1996) by incorporatingmore appropriatelystruc-
turedorthographicandphonologicalrepresentations.

Apart from issuesof parsimony, the importanceof a
single-mechanismaccountis that it providesinsight into
why thereis somuchsharedstructurebetweenso-called
regular andexceptionitems. For instance,the exception
word PINT hasregularcorrespondencesfor the P, N, and
T, andeventheexceptionalI receivesapronunciationthat
it adoptsin many otherwords(e.g.,PINE, DIE). Moreover,
nonwordpronunciationis influencedby exceptionaswell
as regular neighbors(Glushko, 1979). Accountswhich
invokeseparatemechanismsfor theregularversusexcep-
tional aspectsof languagefail to explain or capitalizeon
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thissharedstructure.

2. Skilled performanceis supportedby the inte-
grationof multiple sourcesof information; im-
pairedperformancefollowing braindamagecan
reflect the underlyingdivision-of-laboramong
thesesourcesin thepremorbidsystem.

Patientswith fluent surfacedyslexia exhibit relatively
normal readingof regular wordsandnonwordsbut pro-
duce “regularization” errors to many exception words,
particularly thoseof low frequency. Dual-routetheories
explain surface dyslexia as partial damageto the lex-
ical (non-semantic)route that impairs low- more than
high-frequency words,with the sparedregular andnon-
word reading supportedby the undamagednonlexical
route.Thereis, however, no explanationfor why thelex-
ical damageis alwayspartial—thearchitectureprovides
equallywell for completeeliminationof thelexical route
with completesparingof thenonlexical route.Thiswould
yield aninability to pronounceany exceptionwordswith
completesparingof regularwordsandnonwords—apat-
tern thathasnever beenobservedempirically. As excep-
tion word readingbecomesvery severelyimpaired,regu-
larword(andnonword)readinginvariablybeginsto suffer
(seePattersonetal., 1996).

By contrast,Plautet al. (1996)provide an accountof
surfacedyslexia in which it is impossibleto eliminateex-
ceptionwordreadingwithoutalsoimpairingperformance
on regular wordsandnonwords. The reasonis that nor-
malperformanceis supportedby thecombinationof both
the phonologicalandsemanticpathways. The contribu-
tion from semanticsrelievesthephonologicalpathway of
having to learnto pronounceall typesof wordsby itself.
Rather, it becomesfully adequateonly at thoseaspects
of the task for which it is well suited: processingitems
which are either high in frequency and/or in spelling-
soundconsistency (seeEquation1). Low-frequency ex-
ceptionwordsareprocessedto somedegreebut typically
requireadditionalsupportfrom the semanticpathway to
bepronouncedcorrectly. Semanticdamage,then,reveals
the limitations of the undamagedphonologicalpathway,
whichmanifestassurfacedyslexia. Evencompleteelimi-
nationof semanticssparesmany exceptionwords,partic-
ularly thosewith high frequency. The only way to com-
pletelyeliminateexceptionwordreadingis to damagethe
phonologicalpathway aswell, but this alsoimpairsregu-
lar word andnonword reading(asobservedempirically).

3. The co-occurrenceof different typesof errors
canarisefrom singlelesionswithin adistributed
systemthat learnsto map amongthe different
typesof information.

Theerrorpatternsof brain-damagedpatientscanplace
strong constraintson theoreticalaccountsof cognitive

processes.The traditionalaccountof the co-occurrence
of visualandsemanticerrorsin deepdyslexia (Morton &
Patterson,1980)assumesan impairmentto visualaccess
of (abstract)semanticsto explain the visual errors,and
a secondimpairmentto semanticaccessof phonologyto
explain the semanticerrors. Theproblemis that this ac-
countexplainsthe occurrenceof visual errorsandof se-
manticerrors,but not their co-occurrence: it is perfectly
feasiblewithin theframework to introduceonly oneof the
lesions—say, the second—andpredictpatientswho pro-
duceonly semanticerrors. While suchcaseshave been
reported(e.g.,KE; Hillis, Rapp,Romani,& Caramazza,
1990), the vast majority of deepdyslexic patientsmake
both visual and semanticerrors (seeColtheart,Patter-
son,& Marshall,1987),andthetraditionalaccountfailsto
explain this. An appealto chanceanatomicproximity of
therelatedbrainstructuresfailsbecausetheco-occurrence
is not symmetric;many dyslexic patientsmake visualer-
rorsbut nosemanticerrors.

Ontheconnectionistaccount(Hinton& Shallice,1991;
Plaut& Shallice,1993), the co-occurrenceof visual er-
rorswith semanticerrorsis a naturalconsequenceof the
natureof learningwithin a distributedattractornetwork
thatmapsorthographyto semantics.Essentially, the lay-
outof attractorbasinsmustbesensitiveto bothvisualand
semanticsimilarity, andso thesemetricsarereflectedin
thetypesof errorsthatoccurasa resultof damage.

4. A doubledissociationin performingtwo tasks
doesnot implicate separatemodulesdedicated
to performingeachof the tasks,but can arise
from gradedfunctionalspecializationwith adis-
tributedsystemthatperformsbothtasks.

Cognitive neuropsychologistshave traditionally used
doubledissociationsasa meansof inferring thestructure
of the cognitive system(Teuber, 1955). If eachof two
taskscanbeselectively impairedby brain damagewhile
leaving the otherrelatively intact, it seemsreasonableto
assumethatthetwo tasksaresubservedby separatemech-
anisms. Unfortunately, this logic is often appliedunder
the assumptionthat the cognitive systemis composedof
a setof distinctmodules,but varioustypesof nonmodu-
lar systemscanalsogive rise to doubledissociations(for
discussion,seeFarah,1994;Shallice,1988).

As a casein point, deepdyslexic patientsare much
worseatreadingaloudabstractwordscomparedwith con-
cretewords,whereasconcrete-word dyslexic CAV (War-
rington, 1981) showed the reversepattern. This double
dissociationpromptedWarringtonandothers(e.g.,Mor-
ton & Patterson,1980) to assumethat the semanticsfor
abstractwordswasrepresentedseparatelyfrom thosefor
concretewords. By contrast,Plaut and Shallice(1993,
alsoseePlaut,1995)developedanextensionof the Hin-
tonandShallice(1991)deepdyslexia simulationin which
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thereis noseparationof therepresentationsandprocesses
subservingabstractandconcreteword reading.Thenet-
work does,however, developstrongerattractorsfor con-
cretewordsbecausethey have muchrichersemanticrep-
resentations(i.e.,many moresemanticfeatures).Thisdif-
ferenceleadsto a degreeof functional specializationin
the system. Damagebetweenorthographyand phonol-
ogy producesa greaterimpairmenton abstractwordsbe-
causetheseitems benefit much less from the clean-up
provided by the semanticattractors. Severe damageto
setsof connectionsthat implementtheseattractors,by
contrast,impairs concretewords the most becausethey
have come to rely on the clean-up,whereasmany ab-
stractwordscanbe readwithout this support. Thus,the
abstract-concretedoubledissociationdoesreveal some-
thing importantaboutthe underlyingorganizationof the
system,but thisorganizationdoesnotcorresponddirectly
to theempiricallymanipulatedstimulusdimension(con-
creteness).

The above four points illustrate ways in which a dis-
tributedconnectionistapproachhasprovidednew insights
both normal and impaired word reading. It must be
acknowledged,however, that the existing implemented
modelshaveanumberof basiclimitationsthatultimately
preventthemfrom collectively constitutingacomprehen-
siveaccountof thedomain.Theselimitationsstemlargely
from thefactthatall of themhaveveryrestrictedtemporal
behavior: Singlestaticmonosyllabicwordsarepresented
asinput,andasingle,staticsemanticand/orphonological
patternis generatedasoutput. Naturalisticreadingis, of
course,a far morefluid andtemporallycomplex activity,
involving sequencesof attentionalshifts and eye move-
mentsover linesof text asinput,sequencesof articulatory
gesturesasspoken output,and interactionsamongmul-
tiple levelsof linguistic structurein bothcomprehension
andproduction(seeJust& Carpenter, 1987).

Thecurrentchapterpresentsasimulationwhichcanbe
seenasa first steptowardsincorporatingsomeof these
complexities into connectionistmodelsof reading. The
modelis still appliedonly to singlemonosyllabicwords,
but this limitation reflectsmorethechoiceof trainingcor-
pusthanany intrinsic limitation of the architecture.The
network generatessequencesof phonemesasoutputin re-
sponseto letter stringsas input. Critically, it maintains
a focus of attentionwithin the word as it is being pro-
nounced;this focus is usedto refixate the input string
when the network encountersdifficulty in generatinga
pronunciation. The model learnedto pronouncevirtu-
ally all of the2998-word trainingcorpus,andpronounced
nonwords as well as skilled readers. It also exhibited
a lengtheffect andthe standardinteractionof word fre-
quency andspelling-soundconsistency if the numberof
fixationsit makesin pronouncingaword wastakento re-
flect its naminglatency.

Considerationof sequentialprocessingfor both visual
input andarticulatoryoutputis critical for a full account
of a numberof empiricalphenomena,particularly those
relatedto theeffectsof thelengthof theinput string. The
currentmodelis appliedonly to asmallsubsetof theseef-
fects,relatingto differentialeffectsfor wordsversusnon-
words(Weekes,1997),andtheexaggeratedlengtheffect
of letter-by-letterreadersand its interactionwith lexical
variables(Behrmannet al., 1998b).In thelattercase,the
empiricaladequacy of the model is somewhat limited in
that the magnitudeof the lengtheffects, relative to nor-
mal performance,aremuchsmallerthanfor mostletter-
by-letterreaders.Nonetheless,themodelillustrateshow
letter-by-letterreadingcanbeinterpretedasreflectingthe
operationof thenormalreadingsystemfollowing periph-
eraldamage(seeBehrmann,Plaut,& Nelson,1998b,for
discussion).

Giventhatthecurrentmodelis, in many respects,very
different from previous models(Plaut et al., 1996; Sei-
denberg & McClelland,1989),it is importantto consider
how they arerelated.With regardto theorthographicin-
put,themodelsarerelativelysimilar in thatall of themare
presentedwith anentirewordasinput. Thecurrentmodel
differsin theuseof position-specificletterunitsanda re-
fixation mechanism.However, mostwordsareprocessed
in a singlefixation in skilled performance,which corre-
spondsto the staticpresentationof input in the previous
models.In this way, even thoughthe currentmodelpro-
ducesa single phonemeat a time, the fact that it does
so basedon the entire orthographicinput at every step
makesit fully consistentwith evidencesuggestinga con-
siderabledegreeof parallelvisualprocessingduringword
reading(see,e.g.,Reichleetal.,1998).Thispropertyalso
distinguishesit from other sequentialmodels in which
the orthographicinput is shiftedleftward oneletter each
time a phonemeis generated(e.g.,Bullinaria, 1997;Se-
jnowski & Rosenberg, 1987). In fact, thesemodelsare
very similar to thecurrentmodelwhenit is refixatingev-
erygrapheme.

The more substantialdifferencebetweenthe model
and the previous parallel onesconcernsthe generation
of phonologicaloutput. The previous modelsgenerated
a static representationof the pronunciationof an entire
(monosyllabic)word, whereasthe currentmodel gener-
atesa pronunciationphoneme-by-phoneme.An interme-
diate casewould be a model which derived a represen-
tation of an entireword (or at leasta syllable) andthen
usedthis representationasinput to generatesequentialar-
ticulatoryoutput. PlautandKello (1998)describesucha
systemin thecontext of modelingphonologicaldevelop-
ment,althoughthe phonologicalrepresentationis gener-
atedfrom acousticratherthanorthographicinput. A read-
ing modelwhichadoptedthecurrentmodel’s treatmentof
orthographicinput but PlautandKello’s treatmentof ar-

15



Plaut Word ReadingandAcquiredDyslexia

ticulatoryoutputwould combinethestrengthsof thecur-
rent sequentialmodelandprevious parallelmodels,and
shouldbe ableto modeleffectson naminglatencies,in-
cluding thoserelatingto orthographiclength,directly in
its temporalbehavior. While suchan approachappears
promisingfor addressingthe full rangeof empiricalphe-
nomenain normalandimpairedword reading,it remains
for futurework to bring it to fruition.

6 Further Readings

Sejnowski and Rosenberg’s (1987) NETtalk model was
oneof the first attemptsto applyconnectionistnetworks
to realistictasks.Thesubsequenthighly influentialmod-
eling work by Seidenberg and McClelland (1989) was
more psychologicallyoriented,making detailedcontact
with specificpatternsof empiricaldata. Plaut,McClel-
land,Seidenberg, andPatterson(1996)elaboratedtheap-
proachtakenby Seidenberg andMcClellandby develop-
ing modelsthat provided a bettermatchto someempir-
ical findings and by providing a more systematictreat-
mentof the computationalprinciplesunderlyingthe ap-
proach.Otherrecentconnectionistmodelsof word read-
ing includeBullinaria (1997),Zorzi, Houghton,andBut-
terworth (1998),andHarm (1998). The most influential
non-connectionistimplementationof word readingis the
Dual-RouteCascaded(DRC) modelof Coltheart,Curtis,
Atkins, andHaller (1993).

The above modelsfocuslargely on the mappingfrom
print to sound;Hinton andShallice(1991)carriedout an
importantinvestigationof how networks can be applied
to the taskof mappingprint to meaning.This work was
followedup extensively by PlautandShallice(1993).

For backgroundonsomeof therelevantempiricalphe-
nomenain normal and impairedword reading,seethe
following: normalskilled reading(Balota,1994),surface
dyslexia (Patterson,Coltheart,& Marshall, 1985), deep
dyslexia (Coltheart,Patterson,& Marshall,1980),phono-
logicaldyslexia (Coltheart,1996),lengtheffects(Hender-
son,1982),andpurealexia/letter-by-letterreading(Colt-
heart,1998).
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Beauvois, M.-F., & Derouesńe, J. (1979). Phonologicalalexia:
Three dissociations. Journal of Neurology, Neurosurgery,
andPsychiatry, 42, 1115–1124.

Behrmann,M., Barton, J. J., Shomstein,S., & Black, S. E.
(1999). Eyemovementsreveal the sequentialprocessingin
letter-by-letter reading. Manuscriptsubmittedfor publica-
tion.

Behrmann,M., & Bub, D. (1992). Surfacedyslexia anddys-
graphia:Dual routes,a singlelexicon. CognitiveNeuropsy-
chology, 9, 209–258.

Behrmann,M., Nelson,J.,& Sekuler, E. (1998a).Visualcom-
plexity in letter-by-letter reading: “pure” alexia is not pure.
Neuropsychologia, 36, 1115–1132.

Behrmann,M., Plaut, D. C., & Nelson,J. (1998b). A litera-
ture review andnew datasupportingan interactive account
of letter-by-letter reading. Cognitive Neuropsychology, 15,
7–51.

Besner, D., Twilley, L., McCann,R. S.,& Seergobin,K. (1990).
On the connectionbetweenconnectionismanddata: Are a
few wordsnecessary?Psychological Review, 97, 432–446.

Bub,D., Cancelliere,A., & Kertesz,A. (1985).Whole-wordand
analytic translationof spelling-to-soundin a non-semantic
reader. In K. Patterson,M. Coltheart,& J.C.Marshall(Eds.),
Surfacedyslexia (pp.15–34).Hillsdale,NJ: Erlbaum.

Bullinaria, J. A. (1997). Modeling reading,spelling,andpast
tenselearningwith artificial neuralnetworks.Brain andLan-
guage, 59, 236–266.

Cipolotti,L., & Warrington,E.K. (1995).Semanticmemoryand
readingabilities: A casereport. Journal of theInternational
Neuropsychological Society, 1, 104–110.

Coltheart, M. (Ed.). (1996). Special issueon Phonological
Dyslexia. CognitiveNeuropsychology, 13, 749–934.

Coltheart,M. (Ed.).(1998).Specialissueon PureAlexia. Cog-
nitiveNeuropsychology, 15, 1–???

Coltheart,M., Curtis,B., Atkins, P., & Haller, M. (1993).Mod-
els of reading aloud: Dual-routeand parallel-distributed-
processingapproaches.Psychological Review, 100, 589–608.

Coltheart,M., Patterson,K., & Marshall,J. C. (Eds.).(1980).
Deepdyslexia. London:Routledge& KeganPaul.

Coltheart,M., Patterson,K., & Marshall, J. C. (1987). Deep
dyslexia since 1980. In M. Coltheart, K. Patterson,&
J.C. Marshall(Eds.),Deepdyslexia (pp.407–451).London:
Routledge& KeganPaul,2 edition.

Coslett,H. B., & Saffran,E. M. (1989).Evidencefor preserved
readingin “purealexia”. Brain, 112, 327–359.

16



Plaut Word ReadingandAcquiredDyslexia

Dejerine,J. (1892). Contribution à l’ étudeanatomocliniqueet
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