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1. Introduction

Words are often thought of as the building blocks of language, but the rich-
ness of their internal structure and the complexity of how they combine be-
lies such  a simple  metaphor.   Lexical  knowledge  encompasses multiple 
types  of  interrelated  information—orthographic,  phonological,  semantic, 
and grammatical—with substantial degrees of ambiguity within each.  It is 
perhaps not surprising then that, despite the extensive efforts put into study-
ing lexical processing across multiple disciplines, our understanding of the 
cognitive and neural bases of word representation remains piecemeal.

The standard way of thinking about lexical representation is that each 
word is coded by some type of separate, discrete data structure, such as a 
“logogen” (Morton,  1969)  or localist processing unit  (Rumelhart & Mc-
Clelland, 1981).  Each such representation has no internal structure of its 
own but serves as a “handle” that links together the various types of infor-
mation that comprise knowledge of the word.  One interesting implication 
of this view is that, although words can be similar orthographically, phono-
logically, semantically, or grammatically, there's no sense in which, inde-
pendent of these other dimensions, words can be similar lexically.  That is, 
whereas the representation of each aspect of lexical knowledge defines a 
similarity space within which words can be more or less related to each oth-
er, lexical representations per se are fundamentally different in that each 
word is coded independently of every other word.  In essence, lexical repre-
sentations  themselves  have  no  relevant  properties—they  exist  solely  to 
solve a particular computational problem: how to bind together specific or-
thographic,  phonological,  semantic,  and grammatical information so that 
each aspect can evoke the others and together contribute coherently to lan-
guage processing more generally.

Although the traditional theory of lexical representation has consider-
able intuitive appeal,  it runs into some difficulties when confronting the 
complexities of the internal structure and external relationships of words. 



This chapter explores the possibility that a particular form of computational 
modelling—variously  known  as  connectionist  modeling,  neural-network 
modeling, or the parallel distributed processing (PDP) approach, not only 
avoids these difficulties but, more fundamentally, provides a different solu-
tion to the problem that traditional lexical representations were created to 
solve in the first place.  In particular, and as elaborated below, connection-
ist/PDP networks can learn the functional relationships among orthograph-
ic, phonological,  semantic, and grammatical information even though no 
particular representation binds them all together in one place.  In this way, 
connectionist/PDP  modelling  raises  the  radical  possibility  that,  although 
there is certainly lexical knowledge and lexical processing, as traditionally 
construed there is no such thing as lexical representation.

2. Principles of connectionist representation

Connectionist models are composed of large groups of simple, neuron-like 
processing units that interact across positive- and negative-weighted con-
nections.  Typically, each unit has a real-valued activation level which is 
computed according to a non-linear (sigmoid) function of the weighted sum 
of activations of other, connected units.  Different groups of units code dif-
ferent types of information, with some units coding input to the system and 
others coding the system's output or response to that input.  Knowledge of 
how inputs are related to outputs is encoded in the pattern of weights on the 
connections among units; learning involves modifying the weights in re-
sponse to performance feedback.  

In thinking about how a group of units might represent entities in a do-
main, it is common to contrast two alternatives.  The first is a localist repre-
sentation, in which there is a one-to-one relationship between units and en-
tities—that is, a single, dedicated unit corresponds to each entity.  The sec-
ond is a  distributed representation, in which the relationship is many-to-
many—that is, each entity is represented by a particular pattern of activity 
over the units, and each unit participates in representing multiple entities.1

The interactive activation (IA) model of letter and word perception (Mc-
Clelland & Rumelhart, 1981) provides a useful context for clarifying this 
distinction.  The model consists of three layers of interacting units: letter 
feature units at the bottom (various strokes at each of four positions), letter 



units in the middle (one per letter at each position; e.g., B, L, U, and R), and 
word units at the top (one per word; e.g.,  BLUR). The IA model is usually 
thought  of  as localist  because it  contains single units  that stand in one-
to-one correspondence with words, but it is important to recognize that a 
representation is localist or distributed only relative to a specific set of enti-
ties. Thus, the word level of the IA model is localist relative to words, and 
the letter level is localist relative to (position-specific) letters. However, at 
the letter level, the presentation of a word results in the activation of multi-
ple units (corresponding to its letters), and each of these units is activated 
by multiple words (i.e., words containing that letter in that position).  Thus, 
the letter level in the IA model is localist relative to letters but distributed 
relative to words.

In practice, however, it can be difficult to distinguish localist from dis-
tributed representations on the basis of activity because localist units typi-
cally become active not only for the entity to which they correspond but 
also for entities that are similar to it.  For example, in the IA model, the in-
put for BLUR activates its word unit strongly but also partially activates the 
word unit for  BLUE (see Bowers, 2009, p. 226).  This off-item activation 
can be difficult to distinguish from the patterns that comprise distributed 
representations.  Moreover, in most localist theories it is assumed that there 
are multiple redundant copies of each dedicated unit. Thus, in both localist 
and distributed representations, multiple units become active in processing 
a given entity, and each unit will become at least partially active for multi-
ple entities.

A further consideration is that the number of active units in a representa-
tion—its sparseness—is a matter of degree.  Localist representations consti-
tute one extreme of sparseness, but distributed representations in which a 
very small percentage of units are active at any one time can be functionally 
quite similar, in that each pattern can have effects that are largely indepen-
dent of the effects of other patterns.  Even so, sparse distributed representa-
tions have a distinct advantage over strictly localist ones in that they pro-
vide far more efficient coding (O'Reilly & McClelland, 1994).  Moreover, 
the degree of sparseness of learned internal representations within connec-
tionist networks need not be stipulated a priori but arises as a consequence 
of the basic network mechanisms, the learning procedure, and the structure 
of the tasks to be learned.  In general, systematic tasks—in which similar 
inputs map to similar outputs—yield denser activation to support general-



ization, whereas unsystematic tasks such as word recognition give rise to 
sparser activation  to  avoid  interference (for  discussion,  see  McClelland, 
McNaughton, & O'Reilly, 1995; Plaut, McClelland, Seidenberg, & Patter-
son, 1996).

An alternative  characterisation of the locality of a representation is in 
terms of  knowledge rather than activity (Bowers, 2009).  That is, one can 
distinguish whether knowledge about an entity is encoded in the connec-
tions coming into or out  of  a particular unit  or  whether it  is distributed 
across the connections of many units.  For example, within the IA model, 
knowledge that the letter string BLUR is a word is coded only in the connec-
tions between the corresponding word unit and its letters; remove that sin-
gle unit, and BLUR is no longer a word to the model.

Although this form of localist theory is clearly distinct from the types of 
knowledge typically learned by connectionist/PDP networks,  it runs into 
difficulties when confronted with the general issue of the appropriate granu-
larity of localist units—in particular, whether units should be allocated to 
individually encountered instances of entities or to some equivalence class 
of instances (Plaut & McClelland, 2010).  The former case is problematic 
not only because it requires an unrealistic amount of storage but also be-
cause it doesn't explain how we recognize novel instances of familiar cate-
gories (e.g.,  a new car on the street, or  this particular occurrence of the 
word BLUR).  Assigning units to classes of instances is problematic because 
there will always be some further distinctions within the class that are im-
portant in some contexts but that are inaccessible because the instances are 
represented identically by the same localist unit.  If both instance and class 
units are added, the knowledge about an entity is no longer localised to a 
single processing unit—that is, on this alternative formulation, the represen-
tation becomes distributed.

Although the issue of the granularity of localist representations is prob-
lematic in general, it could be argued that it is entirely straightforward in 
the specific case of words.  That is, units should be allocated for each word,  
which corresponds to a class of instances (i.e., specific occurrences of that 
word).  The reason this works is that words are symbolic—each instance of 
a word  is  exactly  functionally equivalent  to  every other instance of  the 
word, and so nothing is lost by representing them identically.  Thus, even if 
localist representation is untenable in general, perhaps it is perfectly well-
suited for lexical knowledge.  



Unfortunately, localist representations face another challenge in this do-
main—capturing the internal structure of words.

3. The challenge of internal structure: Morphology

The real building blocks of language, if there were such things, would be 
morphemes.  The traditional view of lexical representation is that words are 
composed of one or more morphemes, each of which contributes systemati-
cally to the meaning and grammatical role of the word as a whole (e.g., UN-

BREAKABLE = UN- + BREAK + -ABLE).  If English morphology were per-
fectly systematic, lexical representation would have nothing to contribute 
beyond morphemic representation, and localist structures might be fully ad-
equate for the latter.  However, as is true of other linguistic domains, mor-
phological systematicity is only partial.  That is, the meaning of a word is 
not always transparently related to the meaning of its morphemes (e.g., a 
DRESSER is not someone who dresses but a piece of furniture containing 
clothes).  Moreover, the meaning of a morpheme can depend on the word it 
occurs in (e.g., the affix -ER can be agentive [TEACHER], instrumental 
[MOWER], or comparative [FASTER], depending on the stem).  In fact, some 
words decompose only partially (e.g., -ER is agentive in GROCER and instru-
mental in HAMMER, but what remains in each case [GROCE?, HAM?] is not a 
morpheme that contributes coherently to meaning).  In short, the relation-
ship of the meaning of a word to the meanings of its parts—to the extent it 
even has parts—is sometimes straightforward but can be exceedingly com-
plex in general.

This complexity presents a formidable challenge to localist theories of 
lexical representation.  First, the wealth of empirical data showing strong 
effects of morphological structure on the speed and accuracy of word 
recognition rules out a solution that involves units only for whole words. 
The fact that many words exhibit only partial semantic transparency also 
rules out having only morpheme units that contribute to meaning indepen-
dently.  The only viable approach would seem to be one in which both 
word and morpheme units are included, such that the word units compen-
sate for any lack of transparency in the semantic contribution of individual 
morphemes (see, e.g., Taft, 2006).  Even setting aside concerns about how 
the system would determine what morphemes are contained in a word, allo-



cate and connect the necessary units, and weight them relative to the word 
unit appropriately, the approach runs into problems because it forces mor-
phological decomposition to be all-or-none.  That is, a word either does or 
doesn't contain a morpheme, and if it does, the morpheme unit's contribu-
tion to meaning (as distinct from the word unit's contribution) is the same 
as in other words containing it.  For instance, it seems clear that BOLDLY 

contains BOLD as a morpheme (in that it makes a transparent semantic con-
tribution), whereas HARDLY doesn't contain HARD (and so HARDLY, despite 
the similarity in form, would not be decomposed).  And, indeed, in a visual-
ly primed lexical decision experiment, BOLD primes BOLDLY but HARD 

doesn't prime HARDLY (relative to nonmorphological orthographic and se-
mantic controls; Gonnerman, Seidenberg, & Anderson, 2007).  But what 
about LATE in LATELY?  On the localist theory, LATELY should behave ei-
ther like BOLDLY if it is decomposed, or HARDLY if it's not, but empirically 
it exhibits an intermediate level of priming (Gonnerman et al., 2007).  This 
finding is awkward for any theory that has no way to express intermediate 
degrees of morphological relatedness.

How might morphological structure be understood on a distributed con-
nectionist approach?  The first thing to point out is that morphemes, like 
word units, have no relevant internal structure but are posited to solve a 
particular problem: how to relate the surface forms of words to their mean-
ings.  We assume that (phonological) surface forms are coded by distrib-
uted patterns of activity over a group of units such that words with similar 
pronunciations are coded by similar patterns, and word meanings are coded 
over a separate group of units whose patterns capture semantic similarity. 
Mapping from one to the other is difficult precisely because, apart from 
morphological structure (and rare pockets of sound symbolism), phonologi-
cal similarity is essentially unrelated to semantic similarity.  This type of 
arbitrary mapping is particularly difficult for a connectionist network to 
learn, because units—due to their limited nonlinearity—are intrinsically bi-
ased to map similar inputs to similar outputs.  In fact, when output similari-
ty is very different from input similarity, the mapping cannot be implement-
ed by direct connections between input and output units, and an additional 
layer of so-called hidden units are needed to mediate between the input and 
output.  By modifying the input-to-hidden weights, the network can learn 
to re-represent the input patterns as a new set of patterns over the hidden 
units whose similarities are sufficiently close to those of the output patterns 



that the hidden-to-output weights can generate the correct outputs.  In this 
way, networks learn hidden representations that have a similarity structure 
that is in some sense halfway between the structure of the inputs and the 
structure of the outputs.  This can always be done with a large enough hid-
den layer, but sometimes it is more efficient to use a series of smaller hid-
den layers instead.

Of course, spoken word comprehension is not a completely arbitrary 
mapping precisely because many words have morphological structure.  On 
a connectionist account, however, the nature of this structure is not stipulat-
ed in advance (e.g., that words are composed of discrete parts) but is some-
thing that manifests in the statistical relationship between inputs and out-
puts and thus is discovered by the network in the course of learning.

Morphological structure introduces a degree of componentiality between 
inputs and outputs—that is, the degree to which parts of the input can be 
processed independently from the rest of the input.  From a connectionist 
perspective, the notion of “morpheme” is an inherently graded concept be-
cause the extent to which a particular part of the phonological input be-
haves independently of the rest of the input is always a matter of degree 
(Bybee, 1985).  Also note that the relevant parts of the input need not be 
contiguous, as in prefixes and suffixes in concatenative systems like Eng-
lish.  Even noncontiguous subsets of the input, such as roots and word pat-
terns in Hebrew, can function morphologically if they behave systematical-
ly with respect to meaning or syntax.

A network comes to exhibit degrees of componentiality in its behaviour 
because, on the basis of exposure to examples of inputs and outputs from a 
task, it must determine not only what aspects of each input are important 
for generating the correct output, but also what aspects are uninformative 
and should be ignored.  This knowledge can then apply across large classes 
of items, only within small subclasses, or even be restricted to individual 
items.  In this way, the network learns to map parts of the input to parts of 
the output in a way that is as independent as possible from how the 
remaining parts of the input are mapped.  This provides a type of 
combinatorial generalisation by allowing novel recombinations of familiar 
parts to be processed effectively.  In short, a network can develop mostly 
componential representations that handle the more systematic aspects of the 
task and that generalise to novel forms, while simultaneously developing 



less componential representations for handling the more idiosyncratic 
aspects of the task, as well as the full range of gradations in between.

The graded componential structure of hidden representations is illustrat-
ed in a clear way by a simulation of morphological priming carried out by 
Plaut and Gonnerman (2000).  A three-layer network was trained to map 
from the surface forms of words to their meanings for either of two artificial 
vocabularies (see Figure 1a).  In each, sets of two-syllable words were as-
signed semantic features such that they varied in their semantic transparen-
cy.  Each syllable was assigned a particular set of semantic features, such 
that a transparent word's meaning was simply the union of the features of 
it's component syllables.  Such meanings are fully componential in that 
each semantic feature could be determined by one of the syllables without 
regard to the other.  The meaning of an intermediate word was derived by 
determing the transparent meaning of its syllables and then changing a ran-
dom third of its semantic features; for a distant word, two-thirds of the 
transparent features were changed.  These meanings are progressively less 
componential than transparent meanings because the changed semantic fea-
tures can be determined only from both syllables together.  Finally, the 
meaning of an opaque word was derived by regenerating an entirely new 
arbitrary set of semantic features that were unrelated to the transparent 
meanings of its syllables.

Using these procedures for generating representations, two languages 
were created containing 1200 words each. In the morphologically rich lan-
guage, the first 60 “stems” (first syllables), forming 720 words, were all 
transparent; in the impoverished language, they were all opaque. The re-
maining 480 words were identical across the two languages and were 
formed from 10 transparent stems, 10 intermediate stems, 10 distant stems, 
and 10 opaque stems. The simulation was designed to evaluate the degree 
of morphological priming among this shared set of words as a function of 
the nature of the remaining words in each of the two languages.

Figure 1b shows the amount of priming (difference in settling times fol-
lowing related vs. unrelated primes) as a function of level of morphological 
transparency and of language.  The main relevant finding for present pur-
poses is that, in both languages, morphological priming varies in a graded 
fashion as a function of semantic transparency, analogous to what was ob-
served empirically by Gonnerman et al. (2006).  The strong priming exhib-
ited by transparent words suggests that the network's internal representa-



tions have learned the systematic relationship between the shared stem's 
surface form and its (transparent) meaning, and in this sense it seems natu-
ral to describe the stem as a “morpheme” that is shared by the prime and 
target.  But the intermediate and distant words benefit from sharing a stem 
to less of an extent, due to the fact that their internal representations overlap 
less.  In these cases, what the stem contributes to the representation of the 
prime is not contained in or part of the representation of the target; rather, 
there is some degree of overlap but also some degree of divergence between 
the stem's contribution in the two words.  At best, what could be said is that 

Figure 1. (a) The network architecture used by Plaut and Gonnerman (2000).  
Numbers of units in each group are shown in parentheses, and large arrows rep-
resent full connectivity between groups. (b) Priming results produced by the net-
work as a function of the degree of morphological transparency and whether the  
network was trained on a morphologically rich or impoverished artificial lan-
guage (Adapted from Plaut and Gonnerman, 2000).

(a)

(b)



the stem functions as a morpheme to some degree, and is contained by 
words to some degree; there is no discrete point at which words go from be-
ing fully componential to fully opaque.  And based on the empirical find-
ings, this characterization of graded morphological structure applies to hu-
man subjects as well as to the network.

In summary, unstructured or localist word representations can be aug-
mented with similar morpheme representations to capture some aspects of 
the internal structure of words, but the processing of words with intermedi-
ate degrees of semantic transparency is awkward to explain.  By contrast, 
because distributed connectionist networks start with the assumption that 
entities such as words are represented by patterns of activity with rich inter-
nal structure, such networks can more naturally capture the graded relation-
ships between the surface forms of words and their meanings.

4. The challenge of external context: Ambiguity

Capturing the internal structure of words is not the only challenge facing 
theories of lexical representation.  Another, often neglected problem con-
cerns  ambiguity  in  the  relationships  among  different  aspects  of  lexical 
knowledge.  As it turns out, addressing this issue requires coming to terms 
with how words contribute to, and are influenced by, higher levels of lan-
guage processing.  

Every aspect of lexical knowledge suffers from ambiguity when words 
are considered in isolation: semantics (e.g., BANK [river] vs. BANK [money]), 
syntax (e.g.,  [the]  FLY vs.  [to]  FLY); phonology (e.g.,  WIND [air] vs.  WIND 

[watch]), and even orthography (e.g.,  COLOUR vs.  COLOR).  Most computa-
tional models of lexical processing, including connectionist ones, either ac-
tively avoid this problem by adopting simplified vocabularies and represen-
tations that lack ambiguity (e.g., Kello & Plaut, 1993), or perhaps include it 
only  in  phonology  (e.g.,  Coltheart,  Rastle,  Perry,  Langdon,  &  Ziegler, 
2001; Harm & Seidenberg, 2004; Plaut et al., 1996).  In simulations that in-
clude  semantics,  the  presentation  of  a  homophone  like  ATE/EIGHT in 
phonology, or a heterophonic homograph like WIND in orthography, typi-
cally gives rise to a blend of the semantic features of the relevant meanings, 
although such blending can be reduced by the introduction of disambiguat-



ing information, such as distinctive semantic for homophones or phonologi-
cal information for homographs (see, e.g., Harm & Seidenberg, 2004).

A similar situation arises in simulations that include semantic ambiguity; 
that is, in which a given surface form (e.g.,  BANK) corresponds to more 
than one semantic representation (e.g., Joordens & Besner, 1994), although 
blends can be prevented for the most  part by  the use of  an appropriate 
learning  procedure  (Movellan  &  McClelland,  1993;  Rodd,  Gaskell,  & 
Marslen-Wilson, 2004).  The selection of which of its multiple meanings a 
word produces on a given occasion is influenced by the relative frequency 
of the meanings but is otherwise the result of random processes within the 
network.  This may suffice when accounting for data from words presented 
in isolation and in random order,  but  does not  generalize to the way in 
which ambiguous words are understood in context.

Armstrong and Plaut (2008) developed a simple simulation of the use of 
context  to  disambiguate  semantically  ambiguous  words,  including  both 
homonymy (i.e.,  words  such  as  BANK  [river/money] with  multiple  distinct 
meanings) and  polysemy (i.e., words such as PAPER [document/material] with 
multiple distinct senses with a common meaning).  Although these relations 
are often dichotomized in experimental designs, the degree of pattern over-
lap among distributed semantic representations provides a natural means of 
capturing the full continuum of relatedness among word meanings.  The 
target phenomena for the simulation were findings by Hino, Pexman and 
Lupker (2006) that lexical decision typically produces only a polysemy ad-
vantage  (i.e.,  faster  responding  to  polysemous  vs.  unambiguous  words) 
whereas semantic categorization produces only a homonym disadvantage 
(i.e., slower responding to homonymous vs. unambiguous words).   Arm-
strong and Plaut's goal was to account for these findings, not in terms of 
task differences, but in terms of the time-course of cooperative and compet-
itive dynamics within a recurrent connectionist network.

The architecture of the network included 25 orthographic units connect-
ed to 150 hidden units, which in turn where bidirectionally connected to 
100 semantic units.  In addition, 75 “context” units provided additional in-
put to the hidden units that served as the basis for disambiguating words.  
The training patterns consisted of 128 unambiguous words, 64 homony-
mous words, and 64 polysemous words. Artificial patterns were generated 
to approximate the relationship among written words and their meanings. 
Specifically, orthographic, context, and semantic representations were gen-



erated by probabilistically activating a randomly selected 15% of the units 
in a group (ensuring that all patterns differ by at least three units).  Unam-
biguous words consisted of a single pairing of a randomly selected ortho-
graphic pattern, context pattern, and semantic pattern.  Homonymous words 
were represented as two separate input patterns which shared the same or-
thographic pattern but were associated with a different randomly selected 
context and semantic pattern.  Polysemous words were similar except that 
their semantic patterns were both originally derived by distoring the same 
“prototype” pattern to ensure that they shared 60% of their features with 
each other.  To instantiate the bottom-up salience of orthographic stimuli, 
context input was presented only after 10 unit updates with orthographic in-
put alone.

After training with a continuous version of recurrent back-propagation, 
the network was successful and activating the correct semantic features of 
each word given the appropriate context representation.  Figure 2 shows the 
number of semantic units in the model that were activated strongly (i.e., 
above 0.7) over the course of processing polysemous, homonymous, and 
unambiguous words.  Early in semantic processing (time A), polysemous 
words show an advantage over both homonymous and unambiguous words 
(which do not differ much).  This advantage arises because the shared fea-
tures among the overlapping  meanings mutually support  each other.  In 
contrast, late in processing (time C), homonymous words show a disadvan-
tage relative to both polysemous and unambiguous words (which do not 
differ).  This disadvantage is due to competition among the non-overlap-
ping features of the alternative unrelated meanings of homonymous words. 
Thus, the network exhibits the pattern of results observed by Hino et al. 
(2006), not because of task differences (as there are none in the model), but 
because of changes in the dynamics among sets of semantic features in the 
model.  The model accounts for the empirical data if we assume that lexical 
decisions can be made relatively early in the course of semantic processing, 
whereas semantic categorization requires a more precise semantic represen-
tation that takes longer to activate.  

On this account, it should be possible to shift from a polysemy advan-
tage to a homonymy disadvantage within a single task solely by increasing 
difficulty (and thus degree of semantic processing).  Armstrong and Plaut 
(2008) tested and confirmed this prediction by varying the wordlikeness 
(summed bigram frequency) of nonword foils in a lexical decision task. 



Moreover,  by  using  moderately wordlike nonwords,  they confirmed the 
model's that, with an intermediate amount of semantic processing (time B), 
both effects should be observed (see Figure 2).

The Armstrong and Plaut (2008) model illustrates—in admittedly highly 
oversimplified  form—how  context  can  serve  to  disambiguate  words  of 
varying degress of ambiguity in a way that is consistent with at least some 
aspects of human comprehension processes (see also Gaskell & Marslen-
Wilson, 1997).  But in many ways the model begs the question of where 
the appropriate context representations come from in the first place.  One 
possible answer is that the network activation left behind by the previous 
word might serve as the relevant context.  However, while some models 
have used this approach to model lexical semantic priming effectively (e.g., 
Plaut & Booth, 2000), the meaning of a single word is insufficient in gener-
al to capture the richness and complexity of how previous (and even subse-
quent) linguistic input can serve to alter the meaning of a word.   A full 
treatment of context effects on word comprehension requires embedding 
lexical processing within a broader framework for sentence understanding.

Figure 2. The average number of semantic units in the Armstrong and Plaut  
(2008) model that were active above 0.7 for polysemous, unambiguous, and  
homonymous words. Note that these trajectories do not reflect pre-semantic  
visual and orthographic processing; the zero time-point reflects the onset of  
semantic processing only, and no semantic units were active above 0.7 before  
unit update 10.  (Adapted from Armstrong and Plaut, 2008)



As an  example of  how sentence-level  syntax  and semantics must  be 
used to determine word meanings, consider the following:

1.  The pitcher threw the ball.

Here, every content word has multiple meanings in isolation but an unam-
biguous meaning in context. The same is true of vague or generic words,  
such as  CONTAINER, which can refer to very different types of objects in 
different contexts, as in

2. The container held the apples.
3. The container held the cola.

Finally, at the extreme end of context dependence are implied constituents 
which are not even mentioned in the sentence but nonetheless are an impor-
tant aspect of its meaning.  For example, from

4. The boy spread the jelly on the bread.

most people infer that the instrument was a knife.
To  address  how  sentence  context  can  inform  word  comprehension 

(among other issues), St. John & McClelland (1990; McClelland, St. John, 
& Taraban, 1989) developed a connectionist model of sentence comprehen-
sion which instantiates sentence comprehension as a constraint satisfaction 
process in which multiple sources of information from both syntax and se-
mantics are simultaneously brought to bear in constructing the most plausi-
ble interpretation of a given utterance.  The architecture of the model, in the 
form of a simple recurrent network, is shown in Figure 3. The task of the 
network was to take as input a single-clause sentence as a sequence of con-
stituents (e.g.,  THE-BUSDRIVER ATE THE-STEAK WITH-A-KNIFE) and to de-
rive  an  internal  representation  of  the  event  described  by  the  sentence, 
termed the Sentence Gestalt. Critically, this representation was not prede-
fined but was learned from feedback on its ability to generate appropriate 
thematic role assignments for the event given either a role (e.g., Agent, Pa-
tient,  Instrument) or  a constituent  that fills a role (e.g.,  busdriver,  steak, 
knife) as a probe.

Events were organized around actions and had a probabilistic structure. 
Specifically, each of 14 actions had a specified set of thematic roles, each of 
which was filled probabilistically by one of the possible constituents. In this 
process, the selection of fillers for certain roles biased the selection for other 
roles. For example, for eating events,  the busdriver most often ate steak 



whereas the teacher most often ate soup, although occasionally the reverse 
occurred. These probabilistic biases in the construction of events were in-
tended to approximate the variable but non-random structure of realworld 
events: some things are more likely than others to play certain roles in cer-
tain activities.

The choice of words in the construction of a sentence describing the 
event was also probabilistic. The event of a busdriver eating a steak with a 
knife  might  be  rendered  as  THE-ADULT  ATE  THE-FOOD  WITH-A-UTENSIL, 

THE-STEAK WAS-CONSUMED-BY THE-PERSON,  SOMEONE ATE SOMETHING, 
and so on.  This variability captures the fact that, in real life, the same event 
may be described in  many different  ways and yet  understood similarly. 
Overall, given the probabilistic event structures and the lexical and syntac-
tic options for describing events as sentences, there were a total of 120 dif-
ferent  events  (of  which  some were  much  more  likely  than  others)  and 
22,645 different sentence-event pairs.

Figure 3. The architecture of the St. John and McClelland (1990) model of sentence 
comprehension.  The number of units in each layer is shown in parentheses. The 
large arrows identify which layers receive input (incoming arrow) or produce output 
(outgoing arrow). The dashed arrow indicates a projection from "context" units 
(omitted for clarity) whose states are copied from the Sentence Gestalt layer for the 
previous time step. The indicated content of representations is midway through the 
sentence THE BUSDRIVER ATE THE STEAK WITH A KNIFE. (Adapted from St. John & 
McClelland, 1990).



During training,  sentence-event pairs were generated successively and 
the constituents of each sentence were presented one at a time over the Cur-
rent Constituent units (see Figure 3). For each constituent, the network up-
dated its Sentence Gestalt representation and then attempted to use this rep-
resentation as input to generate the full set of role/filler pairs for the event. 
Specifically, with the Sentence Gestalt fixed and given either a role or a 
filler over the Probe units, the network had to generate the other element of 
the pair over the Role/Filler units. For example, after the presentation of 
THE-STEAK in the sentence THE-STEAK WAS-EATEN-BY THE-BUSDRIVER, the 
network was trained to output, among other things, the agent (busdriver), 
the patient (steak), the action (eating), and the instrument (fork). It was, of 
course, impossible for the network to do this with complete accuracy, as 
these role assignments depend on constituents that have yet to occur or are 
only implied. Even so, the network could do better than chance; it could at-
tempt to predict missing information based on its experience with the prob-
abilistic dependencies in the event structures.  More specifically, it could 
(and did) generate distributions of activity over roles and fillers that approx-
imated their frequency of occurrence over all possible events described by 
sentences that start with the-steak. Note that these distributions could, in 
many cases, be strongly biased towards the correct responses. For example, 
steaks typically fill the patient role in events about eating and (in the envi-
ronment of the network) steaks are most commonly eaten by busdrivers us-
ing a fork. In this way, the training procedure encouraged the network to 
extract as much information as possible as early as possible, in keeping 
with the principle of immediate update (Marslen-Wilson & Tyler, 1980). Of 
course, the network also had to learn to revise the Sentence Gestalt appro-
priately in cases where its predictions were violated, as in THE-STEAK WAS-

EATEN-BY THE-TEACHER.
The network was trained on a total of 630,000 sentence-event pairs, in 

which some pairs occurred frequently and others—particularly those with 
atypical role assignments—were very rare. By the end of training,  when 
tested on 55 randomly generated sentence-event pairs with unambiguous 
interpretations, the network was 99.4% correct.

St. John and McClelland (1990) carried out a number of specific analy-
ses intended to establish that the network could handle more subtle aspects 
of  sentence comprehension.   In general,  the network succeeded at using 
both  semantic  and  syntactic context  to  1)  disambiguate  word  meanings 



(e.g., for THE-PITCHER HIT THE-BAT WITH-THE-BAT, assigning flying bat as 
patient and baseball bat as instrument); 2) instantiate vague words (e.g., for 
THE-TEACHER KISSED SOMEONE, activating a male of unknown age as pa-
tient), and 3) elaborate implied roles (e.g., for THE-TEACHER ATE THE-SOUP, 
activating spoon as the instrument; for THE-SCHOOLGIRL ATE), activating a 
range of foods as possible patients). 

Disambiguation requires the competition and cooperation of constraints 
from both the word and its context.  While the word itself cues two differ-
ent interpretations, the context fits only one.  In THE-PITCHER HIT THE-BAT 

WITH-THE-BAT,  PITCHER cues both container and ball-player.  The context 
cues both ball-player and busdriver because the model has seen sentences 
involving both people hitting bats. All the constraints supporting ball-play-
er combine, and together they win the competition for the interpretation of 
the sentence. In this way, even when several words of a sentence are am-
biguous, the event which they support in common dominates the disparate 
events that they each support individually. The processing of both instances 
of BAT work similarly: the word and the context mutually support the cor-
rect interpretation. Consequently, the final interpretation of each word fits 
together  into  a  globally  consistent  understanding  of  an  entire  coherent 
event.

There is no question that the Sentence Gestalt model has important limi-
tations in its theoretical scope and empirical adequacy.   The model  was 
trained on sentences restricted to single clauses without  embeddings and 
pre-parsed into syntactic constituents, and the use of event structures com-
posed of probabilistic assignment to fixed thematic roles was also highly 
simplified (although see Rohde, 2002, for an extension of the model that 
addresses these limitations).  Nonetheless, it is useful to consider the nature 
of word meanings, and lexical representations more generally, in light of 
the operation of the model.

The  first  thing  to  note  is  that  there  is  no  real  sense in  which  each 
word/constituent2 in the input is assigned a particular semantic representa-
tion—in the form of a pattern of activity over a group of units—even when 
disambiguated by context.   Rather, the current word combines with the 
current context—coded in terms of the existing activation pattern within the 
network—to determine a new internal representation (over the hidden units) 
that then serves to revise the model's sentence interpretation (over the Sen-
tence Gestalt layer).  While it is true that the contribution of the current  



word is carried out via a relatively stable set of weights—those coming out 
of the unit (or units) coding it as input—the actual impact of this knowl-
edge on active representations within the model is strongly dependent on 
context.  This dependence can vary from introducing subtle shading (for 
polysemous words) to selection of an entirely distinct interpretation (for 
homonymous words), and everything in between.  In this way, in the con-
text of the model, it would be a mistake to think of words as “having” one 
or more meanings; rather, words serve as “cues” to sentence meaning—for 
some words, the resulting sentence meanings have considerable similarity 
whereas for others, they can be quite unrelated.

In the context of a typical psycholinguistic experiment, where words are 
presented in isolation and in a random order, the representation of “sentence 
context” is generally unrelated and unbiased relative to the contexts that a 
word typically occurs in, and so the resulting representation evoked over 
the Sentence Gestalt layer reflects general implications of a word across all 
of its context—in some ways analogous to what happens in the model for 
the initial word/constituent of a sentence.  Such a pattern may be systemati-
cally related to other types of knowledge (e.g., pronunciation) but it would-
n't constitute a specific part of some larger lexical representation.  In the 
model, and perhaps in the human language system as well, words are not 
assigned specific representations but solely serve as vehicles for influencing 
higher-level linguistic representations.  It is in this sense that, as claimed at 
the outset of this chapter, distributed connectionist modelling gives rise to a 
view of language in which lexical knowledge and processing play a funda-
mental role in language understanding, without any explicit role for lexical 
representation per se.

5. Conclusions

Despite broad agreement on the critical roles that words play in language, 
there is very little clarity on the nature of word representations and how 
they interact with other levels of representation to support linguistic perfor-
mance.  Early theories of lexical representation used words as unstructured 
“handles” or pointers that simply linked together and provided access to 
phonological, orthographic, semantic, and grammatical knowledge.  How-
ever,  such a simple account is undermined by careful consideration of both 



the effects of the internal structure of words and of the subtleties in how 
words are influence by the contexts in which they occur.

Distributed connectionist modeling provides a way of learning the func-
tional relationships among different types of information without having to 
posit  an  explicit,  discrete  data  structure  for  each  word  (or  morpheme). 
Rather, the similarity structure of activation patterns within and between 
each domain can capture various aspects of morphological relatedness, and 
an emerging sentence-level interpretation can modulate the contributions 
that words make to meaning.  Indeed, if the goal of language processing is 
cast as the comprehension and production of larger-scale utterances, indi-
vidual words can be seen as contributing to these processes in context-sen-
sitive ways without themselves being represented explicitly.  Although the 
resulting theory of language processing runs against strong intuitions about 
the primacy of lexical representation in language, it might nonetheless pro-
vide the best account of actual language performance.

Notes

1. The many-to-one case, where many units code one and only one entity, is es-
sentially a redundant version of a localist code.  The one-to-many case, where 
entities correspond to single units but a given unit represents multiple entities, 
is too ambiguous to be useful.

2. Although St. John and McClelland's (1990) Sentence Gestalt model took con-
stituents rather than words as input (e.g., THE-BUSDRIVER), Rohde's (2002) ex-
tension of the model took sequences of individual words as input.
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