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Deep Dyslexia: 
A Case Study of Connectionist Neuropsychology 

David C .  Plaut 
Carnegie Mellon University, Pitisburgh, USA 

Tim Shallice 
University CoIIege London, London, UK 

Deep dyslexia is an acquired reading disorder marked by the Occurrence of 
semantic errors (e.g. reading RIVER as “ocean”). In addition, patients 
exhibit a number of other symptoms, including visual and morphological 
effects in their errors, a part-of-speech effect, and an advantage for concrete 
over abstract words. Deep dyslexia poses a distinct challenge for cognitive 
neuropsychology because there is little understanding of why such a variety 
of symptoms should CO-OCCur in virtually all known patients. Hinton and 
Shallice (1991) replicated the co-occurrence of visual and semantic errors by 
lesioning a recurrent connectionist network trained to map from orthography 
to semantics. Although the success of their simulations is encouraging. there 
is little understanding of what underlying principles are responsible for them. 
In this paper we evaluate and, where possible, improve on the most important 
design decisions made by Hinton and Shallice, relating to the task, the net- 
work architecture, the training procedure, and the testing procedure. We 
identify four properties of networks that underly their ability to reproduce 
the deep dyslexic symptom-complex: distributed orthographic and semantic 
representations, gradient descent learning, attractors for word meanings, and 
greater richness of concrete vs. abstract semantics. The first three of these 
are general connectionist principles and the last is based on earlier theorising. 

Requests for reprints should be sent to Dr. David C. Plaut, Department of Psychology, 
Carnegie Mellon University, Pittsburgh, PA, 15213-3890, USA (email: plaut@cmu.edu). 
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378 PIAUT & SHALLICE 

Taken together, the results demonstrate the usefulness of a connectionist 
approach to understanding deep dyslexia in particular, and the viability of 
connectionist neuropsychology in general. 

INTRODUCTION 
Despite its familiarity as a concept in cognitive neuropsychology , deep 
dyslexia remains controversial. It was first suggested as a symptom-complex 
by Marshall and Newcombe (1973), who described two patients, GR and 
KU. These patients both made semantic errors in attempting to read aloud 
and also made visual and derivational errors. Coltheart (1980a) was able 
to add another 15 cases. Kremin (1982) added another 8 and over 10 more 
are referred to by Coltheart, Patterson, and Marshall (1987). 

Beginning with the semantic errors, Coltheart (1980a) also extended the 
list of common properties to 12 (examples of errors are from DE, Patterson 
& Marcel, 1977): 

1. Semantic errors (e.g. BLOWING + “wind,” VIEW -P “scene,” 

2. Visual errors (e.g. WHILE -P “white,” SCANDAL ---* “sandals,” 

3. Function-word substitutions (e.g. WAS --+ “and,” ME + “my,” 

NIGHT + “sleep,” GONE + “lost”). 

POLITE --+ “politics,” BADGE + “bandage”). 

4. 

5. 

6. 

7. 

8. 

9. 

10. 
11. 
12. 

OFF + “from,” THEY + “the”). 
Derivational errors (e.g., CLASSIFY + “class,” FACT -+ 
“facts,” MARRIAGE + “married,” BUY + “bought”). 
Nonlexical derivation of phonology from print is impossible (e.g. 
pronouncing nonwords, judging if two nonwords rhyme). 
Lexical derivation of phonology from print is impaired (e.g. judging 
if two words rhyme). 
Words with low imageability/concreteness (e.g. JUSTICE) are 
harder to read than words with high imageability/concreteness (e.g. 
TABLE). 
Verbs are harder than adjectives, which are harder than nouns, in 
reading aloud; 
Functions words are more difficult than content words in reading 
aloud. 
Writing is impaired (spontaneous or to dictation). 
Auditory-verbal short-term memory is impaired. 
Whether a word can be read at all depends on its sentence context 
(e.g. FLY as a noun is easier than FLY as a verb). 

Given the uniformity of the patients’ symptoms, ‘Coltheart characterised 
the symptom-complex as a syndrome. 
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DYSLEXIA & CONNECTIONIST NEUROPSYCHOLOGY 379 

In the conclusion of their review article, “Deep dyslexia since 1980,” 
Coltheart et al. (1987) argue that de.ep dyslexia presents cognitive neuro- 
psychology with a major challenge. They raise two main issues specific to 
the domain of reading. First, they argue that standard “box-and-arrow” 
information-processing accounts of deep dyslexia (e.g. Morton & Patter- 
son, 1980) provide no explanation for the observed combination of 
symptoms. If a patient makes semantic errors in reading aloud, why are 
many other types of behaviour virtually always observed? Second, they 
point out that the standard explanations for semantic errors and for effects 
of concreteness involve different impairments along the semantic route 
(Coltheart et al., 1987, pp. 421422). 

The loss of semantic information for abstract words that explained visual 
errors in oral reading cannot readily explain semantic errors in oral reading, 
since semantic errors typically occur on moderately concrete words. . . . The 
deficit in the semantic routine that gives a pretty account of semantic errors 
is, rather, an abnormal sloppiness in the procedure of addressing a phono- 
logical output code from a set of semantic features. . . . Must we now post- 
ulate several different semantic-routine impairments in deep dyslexia, and if 
so, why do we not observe patients who have one but not the other: in 
particular, patients who make semantic errors but do not have difficulty with 
abstract words? 

Recently, Hinton and Shallice (1991) have put forward a connectionist 
approach to deep dyslexia that addresses the first of these points. They 
reproduced the co-occurrence of semantic, visual, and mixed visual-and- 
semantic errors by lesioning a connectionist network that develops UMUC- 

tors for word meanings. Although the success of their simulations is 
encouraging, there is little understanding of what underlying principles are 
responsible for them. In this paper, we evaluate and, where possible, 
improve on the most important design decisions made by Hinton and 
Shallice. First, we demonstrate the robustness of the account by examining 
network architectures different from the original model. We also improve 
on the rather arbitrary way that the model realised an explicit response by 
extending it to generate phonological output from semantics. Next, we 
evaluate the significance of the particular learning procedure used to train 
the original model by re-implementing it in a more plausible connectionist 
formalism. Finally, we investigate whether the remaining characteristics of 
deep dyslexist--in particular, Coltheart, Patterson, and Marshall‘s third 
issue relating to effects of concreteness-can be explained by the same 
account proposed for the CO-OCCUT~” .ence of error types. The remainder of 
this section presents a brief discussion of additional aspects of deep dys- 
lexia, motivations for a connectionist account, a summary and evaluation 
of the Hinton and Shallice results, and a general overview of the remainder 
of the paper. 
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380 PLAUT & SHALLICE 

Deep Dyslexia 

One problematic aspect of characterising deep dyslexia as a syndrome is 
that, in fact, not all of the 12 properties given earlier are always observed 
when an acquired dyslexic patient makes semantic errors in reading. Thus, 
patient AR (Warrington & Shallice, 1979) did not show the content word 
effects (7 and 9), and had relatively intact writing and auditory short-term 
memory (10 and 11). Three other patients have been described who make 
semantic errors in reading aloud (and do so also when any other speech 
responses are required) and yet make few if any visual errors (Caramazza 
& Hillis, 1990; Hillis, Rapp, Romani, & Caramazza, 1990).’ The lack of 
complete consistency across patients has led to criticisms of the attempt to 
characterise the symptom-complex as directly reflecting an impairment to 
some specific processing component. Some of these arguments are specific 
to deep dyslexia. For example, Shallice and Warrington (1980) held that 
deep dyslexia was not a “pure syndrome.” Others, though, have made 
more general critiques. Morton and Patterson (1980) and Caramazza 
(1984; 1986) denied the theoretical utility of generalising over patients for 
extrapolation to normal function, and Shallice (1988a) claimed more 
specifically that error patterns did not prcvide an appropriate basis for this 
purpose. 

Despite these objections to the theoretical utility of the deep dyslexia 
symptom-complex, Coltheart et al. (1987) stress that work since 1980 re- 
inforces the virtually complete uniformity of symptom pattern found across 
a large number of patients. This means that to dismiss deep dyslexia as 
theoretically irrelevant would be at least as dangerous as to accept it 
uncritically as the manifestation of some specific impairment. For the pre- 
sent we will leave consideration of these methodological criticisms until 
the General Discussion and will assume provisionally that deep dyslexia is 
a valid theoretical concept. 

Many other properties of the reading of individual deep dyslexic patients 
have been recorded. In this paper we will be particularly concerned with 
four: 

1. Additional types of reading errors. Mixed visual-and-semantic (e.g . 
SHIRT + “skirt”) were recorded in all of the patients reviewed by Colt- 

‘One could argue that two of these patients at least are hardly “acquired dyslexia” since 
their problem is held to be at the phonological output lexicon. This, though, presupposes 
that one can make a clear distinction between reading impairments and other difficulties. 
Yet, although it remains generally accepted that nonsemantic phonological reading 
procedures are grossly impaired in deep dyslexic patients (see, e.g.. Marshall & Newcombe. 
1973). it has been argued that there are additional deficits in the semantic reading route, and 
that these can differ in their location, with some patients even being output deep dyslexics 
(Friedman & Perlman, 1982; Shallice & Wamngton, 1980). Thus, the “dear distinction’’ 
between reading and nonreading difficulties is absent from the literature. 
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heart (1980a) on whom there is adequate data; in KF (Shallice & McGill, 
1978) and PS (Shallice & Coughlan, 1980) they were also shown. to occur 
at a higher rate than one would expect if they were all arising as visual 
errors or as semantic errors independently. Another error type, observed 
even earlier by Marshall and Newcombe (1966), is that of visd-then- 
semantic errors (e.g. SYMPATHY + “orchestra,” presumably via sym- 
phony, by GR), described in eight of the patients reviewed by Coltheart 
(1980a). 

2. Influences of semantic variables on visual errors. In general, the 
abstracdconcrete dimension does not just relate to the issue of how success- 
fully different types of words are read. The stimuli producing visual errors 
tend to be more abstract than the responses, and more abstract than the 
stimuli producing other types of responses (see, e.g., Shallice & War- 
rington, 1980). 

3. Confidence in errors. The confidence with which errors are produced 
has been studied in three patients. PW and DE (Patterson, 1978) were 
much more likely to be sure that they were correct for visual errors than 
for semantic errors, but GR gave equally high confidence ratings for both 
visual and semantic errors and for correct responses (Barry & Richardson, 
1988). 

4. Lexical decision. Deep dyslexic patients can often distinguish words 
from orthographically regular nonwords, even when they are quite poor 
at reading the words explicitly (Patterson, 1979). Lexical decision was 
“surprisingly good” for 9 of the 11 cases listed by Coltheart (1980a) for 
which there was data. 

Turning to theoretical accounts of the symptom-complex, we will follow 
Marshall and Newcombe (1973), and many others, by presuming that 
phonological reading procedures are grossly impaired in these patients, 
and that this can account for characteristics 5 ,  6, and presumably 11 (see 
discussions in Coltheart, 1980a; 198Oc; Coltheart et al., 1987). However, 
if it is held that the complete cluster of properties have a common func- 
tional origin, what can it be? The most prosaic possibility is that the syn- 
drome arises from a set of functionally independent deficits that CO-OCCUT 
for anatomical reasons (e.g. Morton & Patterson, 1980; Shallice, 1988a; 
Shallice & Warrington, 1980). If, however, the impairments are only 
specified in terms of damage to hypothetical subcomponents or trans- 
mission routes, many questions remain to be answered. Why do visual and 
derivational errors so often co-occur with semantic ones? Why do mixed 
visual-and-semantic and visual-then-semantic errors occur? If the general 
advantage for concrete words results from impaired access to abstract 
semantics per se, why has only one patient (CAV, Warrington, 1981) been 
observed with superior reading performance on ubstruct words? How does 
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382 PIAUT & SHALLICE 

one account for the effects of concreteness on.visual errors? Ad hoc 
explanations have been given for some of these points (see Mbrton & 
Patterson, 1980; Shallice & Wamngton, 1980), but nothing resembling a 
well-developed theory along these lines exists. 

An interesting version of the “anatomical coincidence” explanation is 
the claim that deep dyslexic reading reflects reading by the right hemi- 
sphere (Coltheart, 1980b; 1983; Saffran, Bogyo, Schwartz, & Marin, 1980). 
The attraction of this hypothesis is the similarities that have been demon- 
strated between reading in deep dyslexia and in patients reading with an 
isolated right hemisphere (e.g. Patterson, Vargha-Khadem, & Polkey, 
1989; Zaidel & Peters, 1981). However, these analogies have been criti- 
cised (see, e.g., Patterson & Besner, 1984a; Shallice, 1988a) and at least 
one patient with many deep dyslexic characteristics has been described 
whose reading was abolished after a second Zeft hemisphere stroke 
(Roeltgen, 1987). Overall, whereas the theory is based on empirical 
analogues for certain aspects of deep dyslexia (e.g. the nature of right 
hemisphere semantics by which it might produce the symptom-complex), 
it is principally an attempt to localise rather than to provide a mechanistic 
account. Since no mechanistic account exists for many aspects of any other 
neuropsychological syndrome except for neglect dyslexia (Mozer & 
Behrmann, 1990), this is hardly a strong criticism of the theory from 
present-day perspectives. However, an explanation oriented towards this 
more complex goal remains a major target for understanding deep dyslexia. 

Motivation of a Connectionist Account 

Connectionist modelling offers a promising approach to producing a mech- 
anistic account of deep dyslexia. Connectionist networks are becoming 
increasingly influential in a number of areas of psychology as a methodo- 
logy for developing computational models of cognitive processes. In 
contrast to conventional programs that compute by the sequential applic- 
ation of stored commands, these networks compute via the massively par- 
allel co-operative and competitive interactions of a large number of simple 
neuron-like processing units. Networks of this form have been applied to 
problems in a wide range of cognitive domains, such as high-level vision 
and attention, learning and memory, language, speech recognition and 
production, and sequential reasoning (see McClelland, Rumelhart, & the 
PDP research group, 1986; Quinlan, 1991; and recent Cognitive Science 
Society conference proceedings). 

In addition to their usefulness in modelling normal cognitive function- 
ing, a number of general characteristics of connectionist networks suggest 
that they may be particularly well-suited for modelling neuropsychological 
phenomena (Allport, 1985). Modular theories of cognitive processes can 
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be expressed naturally by dedicating separate groups of units to represent 
different types of information. In this way the approaoh can be viewed as 
an elaboration of, rather than an alternative to, more traditional “box-and- 
arrow” theorising within cognitive neuropsychology (cf. Seidenberg, 1988). 
Also, partial lesions of neurological areas and pathways can be modelled 
in a straightforward, relatively atheoretical manner by removing a pro- 
portion of units in a group and/or connections between groups. In contrast, 
simulations of neuropsychological findings within more traditional compu- 
tational formalisms (e.g. Kosslyn, Flynn, Amsterdam, & Wang, 1990) must 
typically make more specific assumptions about how damage affects par- 
ticular components of the system. Furthermore, since knowledge and 
processing in a connectionist network is distributed across a large number 
of units and connections, performance degrades gracefully under partial 
damage (Hinton & Sejnowski, 1986). This means that a range of inter- 
mediate states between perfect performance and total impairment can 
occur. Together with the richness of the computational formalism, this 
allows behaviour more detailed than the simple presence or absence of 
abilities to be investigated (Patterson, 1990). 

A number of authors have attempted to explain patient behaviour based 
on intuitions about how connectionist networks or other cascaded systems 
(McClelland, 1979) would behave under damage, without actually carrying 
out the simulations (e.g. Miller & Ellis, 1987; Riddoch & Humphreys, 
1987; Shallice & McGill, 1978; Stemberger, 1985). However, the highly 
distributed and dynamic nature of these networks makes such unverified 
predictions somewhat suspect. More recently, a few researchers have 
begun to explore the correspondence of the behaviour of damaged connec- 
tionist networks and patient behaviour, primarily in the domain of acquired 
dyslexia. Mozer and Behrmann (1990) reproduced aspects of neglect dys- 
lexia in a pre-existing connectionist model of word recognition (Mozer, 
1990) by disrupting its attentional mechanism. Patterson, Seidenberg, and 
McClelland (1990) attempted to model a form of surface dyslexia by 
damaging a network model of word pronunciation that previously had been 
demonstrated to account for a wide range of effects in normal reading 
(Seidenberg & McClelland, 1989). In addition, a number of other invest- 
igations are under way in other domains (e.g. Burton, Young, Bruce, 
Johnston, & Ellis, 1991; a h e n  & Servan-Schreiber, 1992; Dehaene & 
Changeux, 1991; Farah & McClelland, 1991; Levine & Prueitt, 1989; Plaut, 
1992; Plaut & Shallice, 1993). Although the successes of these initial 
demonstrations are certainly limited, they are sufficiently encouraging to 
warrant an attempt to understand, in a more general way, the strengths 
and limitations of connectionist neuropsychology . 

Much of the initial motivation for pursuing a connectionist account of 
deep dyslexia comes out of preliminary work by Hinton and Sejnowski 
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(1986) on the effects of damage in networks. They were not primarily 
concerned with modelling deep dyslexia, but rather with investigating how 
distributed representations can mediate in mapping between arbitrarily 
related domains (Hinton, McClelland, & Rumelhart, 1986). They trained 
a network with the Boltzmann Machine learning procedure (Ackley, Hin- 
ton, & Sejnowski, 1985) to activate a specific subset of 30 semantic features 
via 20 intermediate units when presented with the graphemes of each of 
20 3-letter words. The undamaged network performed the task almost 
perfectly, but when single intermediate units were removed, 1.4% of the 
responses of the network were incorrect. Interestingly, 59% of these incor- 
rect responses were the exact semantics of an alternative word, and these 
word errors were more semantically and/or visually similar to the correct 
word than would be expected by chance. Although the demonstration was 
highly simplified, it showed that damage to a network that maps ortho- 
graphy to semantics can produce a pattern of errors with some similarity 
to that made by deep dyslexic patients. 

A Preliminary Connectionist Model of Deep 
Dyslexia 

Based on Hinton and Sejnowski’s initial work, Hinton and Shallice (1991, 
hereafter H&S) undertook to model the error pattern of deep dyslexia 
more thoroughly. Developing the model involved making four sets of 
design decisions that apply to the development of any connectionist simu- 
lation: 

1. The task: What input/output pairs is the network trained on and how 
are they represented as patterns of activity over groups of input and output 
units? 

2. The network architecture: What type of unit is used, how are the 
units organised into gr~ups,  and in what manner are the groups connected? 

3. The training procedure: How are examples presented to the network, 
what procedure is used to adjust the weights to accomplish the task, and 
what is the criterion for halting training? 

4. The testingprocedure: How is the performance of the network evalu- 
ated-specifically, how are lesions carried out and how is the behaviour 
of the damaged network interpreted in terms of overt responses that can 
be compared with those of patients? 

The following four subsections describe the Characteristics of the model in 
terms of each of these issues. The adequacy and limitations of these deci- 
sions are then discussed and serve to motivate the simulations presented 
in this paper. 
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The Task 

H&S defined a version of the task of mapping orthography to semantics 
that is somewhat more sophisticated than that used by Hinton and Sej- 
nowski, although still far from realistic. Orthography was represented in 
terms of groups of position-specific letter units (McClelland & Rumelhart, 
1981). In order to keep the task simple, 40 3- or 4-letter words were chosen 
with restrictions on what letters could occur in each position, resulting in 
a total of 28 possible graphemes (see Table 1). 

Rather than assign a completely arbitrary semantics to each word, H&S 
designed a set of 68 semantic features intended to capture intuitive 
semantic distinctions (see Table 2). On average, about 15 of the 68 features 
are present in the semantic representation of a word. The words were 
chosen to fall within 5 concrete semantic categories: indoor objects, 
animals, body parts, foods, and outdoor objects. The assignment of 
semantic features to words has the property that words in the same category 
tend to be more similar (i.e. share more features) than words in different 
categories (see Fig. 1). However, H&S did not demonstrate directly that 
their semantic categories faithfully reflect the actual semantic similarity 
among words. Figure 1 conveys some sense of the similarity within and 
between categories, but a more direct impression can be obtained from a 

TABLE 1 
The Words Used by Hinton and Shallice 

(a) Letters Allowed in Each Position 

Pos. Letters 

1 B C D G H L M N P R T  
2 A E I O U  
3 B C D G K M P R T W  
4 E K  

(b) Words in Each Category 

Indoor Body Outdoor 
Objects Animah Parts FOO& Objects 

BED 
CAN 
COT 
CUP 
GEM 
MAT 
MUG 
PAN 

BUG 
CAT 
cow 
DOG 
HAWK 
PIG 
RAM 
RAT 

BACK 
BONE 
GUT 
HIP 
LEG 
LIP 
PORE 
RIB 

BUN 
HAM 
HOCK 
LIME 
NUT 
POP 
PORK 
RUM 

~ 

BOG 
DEW 
DUNE 
LOG 
MUD 
PARK 
ROCK 
TOR 
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386 PLAUT & SHALLICE 

TABLE 2 
Semantic Features Used by Hinton and Shallice 

1 max-size-less-foot 
2 max-size-foot-to-two-yards 
3 max-size-greater-tyards 

4 main-shape-1D 
5 main-shape-2D 

6 cross-section-rectangular 
7 cross-section-circular 

8 has-legs 

9 white 
10 brown 
11 green 
12 colour-other-strong 
13 varied-coloun 
14 transparent 
15 dark 

16 hard 
17 soft 

18 sweet 
19 tastes-strong 

20 moves 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

34 

indoors 
in-kitchen 
in-bedroom 
in-livingroom 
on-ground 
on-surface 
otherwise-supported 
in-country 
found-woods 
found-near-sea 
found-near-streams 
found-mountains 
found-on-farms 

part-of-lim b 
35 surface-of-body 
36 interior-of-body 
37 above-waist 

38 mammal 
39 wild 
40 fierce 
41 does-fly 
42 does-swim 
43 does-run 
44 living 
45 carnivore 

46 made-of-metal 
47 made-of-wood 
48 made-of-liquid 
49 made-of-other-nonliving 
50 got-from-plants 
51 got-from-animals 

52 pleasant 
53 unpleasant 

54 man-made 
55 container 
56 for-cooking 
57 for-eating-drinking 
58 for-other 
59 used-alone 
60 
61 
62 
63 

64 
65 

66 

67 

68 

for-breakfast 
for-lunch-dinner 
for-snack 
fordrink 

particularly-assoc-child 
particularly-assoc-adult 

used-for-recreation 

human 

component 

Features within a block were considered “closely related” for the purposes of inter- 
connecting semantic units. 

full display of the similarity (i.e. proximity in semantic space) of each pair 
of words, shown in Fig. 2. Because the words are ordered by category in 
the figure, the extent and uniformity of the similarity within each category 
is reflected by an 8-by-8 block along the diagonal of the matrix, whereas 
between-category similarity is reflected in off-diagonal blocks. A number 
of interesting characteristics are apparent from the similarity matrix. Words 
for body parts are quite similar to each other, and quite different from 
words in other categories. In contrast, indoor objects are not uniformly 
similar to each other, and many are quite similar to foods, particularly 
those that are used with food (i.e. CUP, CAN, MUG, PAN). Outdoor 
objects also vary considerably in their similarities with each other, and are 
often also similar to animals (which are also found outdoors). However, 
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.I ..~~......~...~...~.1.~.....................1..1.1.~...1.....1.... 
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.1 ..1.1.1......1....11...1...................1.... ... IU ....B...I... 
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..1.1.11.... 1.1 ....1....1..1..1.1....1....11.......1....1.......1... 

.~..~.~~..-1.... 1 ................................................... 

.1 ..1.111..........1....1..1..111....1.1..11............ ........I... 
1 .................................................................. 
.I.I.I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  n 
..11..1.1.......1...1.....1........11......1........1............ 

.......... 1 ...1.1.1......1....1.....1......1.11......1........... .I1 

BED 
CQN 
COT 
CUP 
GEM 
WIT 
rmc 
PQN 
BLlG 
CClT 
COW 
DOG 
H W K  
PIG 
RAn 
RCIT 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 ~~ 

17 
18 
19 

.11.1 ......I....... 

).IAn 26 1.. -1.. .... 1 ..1.1.1.1#...1......1................. I 
~ o a <  27 .I ..B.I......I....~.~I...~..................... -11. 
NUT 29 I - * . W . I . . I .  . . . 1 # . . 1 . 1 # . 1 . g . I a . . . . . . . . . . . . . . I . . . .  -I .  wp M .1 ..1.1......1...11111.1.1.....................1... 
~ORK 31 1 . . . I . . . ~ . . . . . . . I . I . ~ ~ . . . I . . . . . . # . . . . . . . . . . . . . . . . .  1 

R I B  24 I ..I....i......I....I.....I........II......I....... 
25 1 ...1.1..1......111.11...1....................... 1. 

L I M  28 8 . . . ~ . ~ . . . ~ . . . . . U ~ . ~ ~ . . , . ~ . . . . . . . . . . . . . . . . . ~ . . . . .  1. 

RUt4 32 .1 ..1.1......1....1.1...11.....................1. 1. 
B E  33 ..11......1.....1..1....1..1..11......1........1... 
DEY 34 1 ..1.........1..1.......1..11.111..............1... 
WJNE 35 ..m.~....g......~....... 1 ..1.1........1.........1.. 
L a  36 .I ..I.I..I....II........I..II...I.............I.. I. 
E(UD 37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

38 . . ~ I . . . . . . I . . . . . . . . . . . . . ~ . . ~ . . B . . . . . . . I . . . . . . . .  . D i .  ROCK 39 ..I.I....I....II...... ..1..1.111......1.........1.. 
TOR 40 ..1.1....1....11........1..1...1......1.........1.. 

.. . .  

I 
1 
................ 
.............I.. 
.....I.......... 
1 ....I.....I.... 
.I ...I.....I.I.. 
.....I....... I.. 

1.. ............. 
FIG. 1 The assignment of semantic features to words used by H&S. A black rectangle 
indicates that the semantic representation of the word listed on the left contains the feature 
whose number (from Table 2) is listed at the top. 

the overall strength of the five on-diagonal blocks supports the use of 
category membership as a general measure of semantic similarity. 

A further requirement of a satisfactory approximation of the task of 
mapping orthography to semantics that H&S did not verify for their repres- 
entations is that the relationship between the visual and semantic represen- 
tations of a word is arbitrary. In other words, the visual similarity of two 
words provides no information about their semantic similarity, and vice 
versa. One way to test the independence of visual and semantic similarity 
is that the probability of a randomly selected word pair being both visually 
and semantically similar, m, should be approximately equal to the product 
of the independent probabilities of visual similarity, v, and semantic simi- 
larity, s. Based on the definitions of visual and semantic similarity used by 
H&S and described later, among all possible nonidentical word pairs in 
the set, m = 0.062, v = 0.36, and s = 0.18, so vs = 0.065 is roughly equal 
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388 PLAUT & SHALLICE 

to rn. Thus, visual and semantic similarity are approximately independent 
in the H&S word set. 

Even taking these considerations into account, there is no question that 
the representations used by H&S fail to reflect the full range of ortho- 
graphic and semantic structure in word reading. The use of position-specific 
letter units, the selection of semantic features, and their assignment to 
words, were based more on computational than empirical grounds. In fact, 
it is not particularly plausible that the semantic representations of a word 
in the human cognitive system is based on individual feature units at the 
level of found-on-farms and used-for-recreation. However, these represen- 
tations exhibit the characteristics that are essential for demonstrating the 
influences of both visual and semantic similarity on deep dyslexic reading: 
(a) visually similar words (i.e. with overlapping letters) have similar ortho- 
graphic representations, (b) words with similar meanings (i.e. in the same 
category) have similar semantic representations, and (c) there is no sys- 
tematic relationship between the orthographic and semantic representa- 
tions of a word. 
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The Network 

Figure 3 depicts the network used by H&S. The 28 grapheme units were 
connected to a group of 40 intermediate units, which in turn were connected 
to the 68 sememe units (the “direct” pathway). In order to allow the 
sememe units to interact, H&S introduced connections at the semantic 
level in two ways. First, they added direct connections between sememe 
units, but rather than include all possible 4624 such connections, they only 
connected sememe units that represent closely related features (as defined 
in Table 2). Although these direct connections help the network ensure 
that sememes are locally consistent, not all relationships among semantic 
features can be encoded by pairwise interactions alone. In order to allow 
combinations of sememes to influence each other directly, H&S also intro- 
duced a fourth group of 60 clean-up units that receive connections from, 
and send connections to, the sememe units. This pathway can enforce more 
global consistency among semantic features. In order to reduce the total 
number of connections, only a random 25% of the possible connections 
between any 2 layers were included, resulting in about 3300 connections 
for the entire network. 

Each unit in the network had a real-valued activity level, or state, ranging 
between 0 and 1, computed by a smooth, nonlinear function of the summed 
input received from other units. 

The Training Procedure 

The network was trained in the following way. The states of the 
grapheme units were set to the appropriate input pattern for a word, and 
the states of all other units were set to 0.2. The network was then run for 
7 iterations, in which each unit updated its state once per iteration, gener- 
ating a pattern of activity over the sememe units. The network was 
initialised to have small random weights, so that at the beginning of training 

s=w 

FIG. 3 The network used by H&S. Notice that sets of connections are named with the 
initials of the names of the s o w  and destination unit groups (e.g. G -* I for grapheme-to- 
intermediate connections). 
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390 PLAUT & SHALLICE 

the pattern of semantic activity produced by the word was quite different 
from its correct semantics. An iterative version of the back-propagation 
learning procedure, known as back-propagation through time (Rumelhart, 
Hinton, & Williams, 1986a; 1986b; Williams & Peng, 1990), was used to 
compute the way that each weight in the network should change so as to 
reduce this difference for the last 3 iterations. These weight changes were 
calculated for each word in turn, at which point the accumulated weight 
changes were carried out and the procedure was repeated. After about 
lo00 sweeps through the 40 words, when the network was presented with 
each word, the activity of each sememe unit was within 0.1 of its correct 
value for that word, at which point training was considered complete. 

The Effects of Lesions 

After training, the intact network produced the correct semantics of 
each word when presented with its orthography. The network was then 
lesioned by removing either a random subset of the units in a layer or the 
connections between two layers, or by adding random noise to the weights. 
Under damage, the semantics produced by a word typically differed some- 
what from the exact correct semantics. Yet even though the corrupted 
semantics would fail the training criteria, it might still suffice for the pur- 
poses of naming. H&S defined two criteria that had to be satisfied in order 
for the damaged network to be considered to have made a response: 

1. A proximiry criterion ensured that the corrupted semantics was 
sufficiently close to the correct semantics of some word. Specifically, the 
cosine of the angle (i.e. normalised dot product) between the semantic 
vector produced by the network and the actual semantic vector of some 
word (in the 68-dimensional space of sememes) had to be greater than 0.8.* 

2. A gap criterion ensured that no other word matched nearly as well. 
Specifically, the proximity to the generated semantics of the best matching 
word had to be at least 0.05 larger than that of any other word. 

If either of these criteria failed, the output was interpreted as an omission; 
otherwise the best matching word was taken as the response, which could 
be either the correct word or an error. 

%ere are a number of reasonable similarity metrics that could be used for comparing 
the network’s output with known responses. The normalised dot product (angle cosine) is 
particularly appropriate because the summed input to each unit is the dot product of its 
incoming weights with the activities of other units. As a result, two activity patterns that have 
high proximiry (i.e. a normalised dot product near 1 .O) will tend to make similar contributions 
to the summed input to other units. Furthermore, the normalised dot product is preferable 
to the more familiar euclidean distance metric because not all types of difference between 
two semantic patterns would be equally disruptive to an output system. In e c u l a r ,  
differences in direction (e.g. towards another meaning) are more significant than differences 
in magnitude (which maintain the relative levels of unit activity). 
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DYSLEXIA 81 CONNECTIONIST NEUROPSYCHOLOGY 391 

In order to compare the behaviour of the network under damage with 
that of patients, H&S systematically lesioned sets of units or connections 
over a range of severity. For 10 instances of each lesion type, all 40 words 
were presented to the network, and omission, correct, and error responses 
were accumulated. As an approximation to the standard error classification 
used for patients (6. Morton & Patterson, 1980), an error was defined to 
be visually similar to the input word if the two words overlapped in at least 
one letter, and semantically similar if the two words belonged to the same 
category. Based on these definitions, errors were classified into four types: 

1. 

2. 

3. 

Visual (V):  responses that are visually (but not semantically) similar 
to the stimulus (e.g. CAT + “cot”). 
Semantic ( S ) :  responses that are semantically (but not visually) 
similar to the stimulus (e.g. CAT + “dog”). 
Mixed visual-and-semantic (V&S): responses that are both visually 
and semantically similar to the stimulus (e.g. CAT +. ‘*rat”). 

4. Other (0): responses that are unrelated to the stimulus (e.g. 
CAT+ “mug”). 

Applied to all possible pairs of words, these definitions give rise to the 
chance rates v ,  s, and m used earlier to demonstrate that visual and 
semantic similarity are approximately independent. 

The most important result was that all lesions produced semantic, mixed 
visual-and-semantic, and visual errors at rates higher than would be 
expected by chance (with the sole exception of lesions of the sememe-to- 
cleanup (S -+ C) connections-the lesion type most resistance to damage). 
Here, “chance” is determined by comparing the ratio of each error rate 
to that of other errors with the predicted ratio, under the assumption that 
error responses are generated randomly from the word set. This is because 
a random pattern of responding would match the chance distribution of 
errors and not simply the chance rate for a particular error type. 

It should be pointed out that mixed visual-and-semantic errors might 
arise simply from the chance rate of semantic similarity among visual 
errors, and the chance rate of visual similarity among semantic errors, 
rather than reflecting an additional influence on errors. The expected rate 
of mixed errors, M, can be calculated from the observed rates of visual 
errors, V ,  and semantic errors, S, under the assumption that visual and 
semantic errors result from two independent processes (Shallice & McGill, 
1978): 

S V MSV- +s- l - s  l - v  

where v ,  s,  and m are as defined earlier. However, for all but one lesion 
type-removing intermediate-to-sememe (I --f S) connections-the number 
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392 PIAUT & SHALLICE 

of mixed visual-and-semantic errors was greater than would be expected 
if visual and semantic similarity were caused independently. Furthermore, 
the network showed a greater tendency to produce visual errors with early 
damage (closer to the graphemes) and semantic errors with later damage 
(closer to the sememes), although even damage completely within the 
semantic clean-up system produced an above-chance rate of visual errors. 
Thus, lesions throughout the network resulted in the basic co-occurrence 
of error types found in deep dyslexia. 

H&S also demonstrated that, even when the semantics produced by the 
system were insufficient to drive a response system plausibly, enough 
information was often available to make between- and within-category 
discriminations. For instance, removing all of the connections from the 
sememe to clean-up units (S 4 C) reduced explicit correct performance 
to 40%. However, of the 60% remaining trials producing an omission, 
91.7% of these resulted in semantics that were closer to the centroid of 
the correct category than to that of any other category (chance is 20%), 
and 87.5% were closer to the semantics of the correct word in that category 
than to that of any other word in the category (chance is 12.5%). The 
effect was weaker with earlier damage: Removing 30% of the grapheme-to- 
intermediate connections (G + I) produced 35.3% correct performance 
with 48.3% between-category and 49.0% within-category discrimination 
on omission trials. 

Finally, a peculiar and interesting effect emerged when the connections 
from the clean-up to sememe units (C 4 S) were lesioned. The network 
showed a significant selective preservation of words in the foods category 
(75% correct) relative to those in other categories (next best, 34% cor- 
rect).’ The effect was quite specific; it did not occur for other lesions in 
the network, nor for the same lesion in a second version of the network 
trained with different initial random weights. 

Attract0 rs 
An important concept in understanding H&S’s results is that of an attractor. 
The sememe units in the network change their states over time in response 
to a particular orthographic input. The initial pattern of semantic activity 
generated by the direct pathway may be quite different from the exact 
semantics of the word. Interactions among sememe units, either directly 
via intra-sememe connections or indirectly via the clean-up units, serve 
gradually to modify and clean-up the initial pattern into the final correct 
pattern. This process can be conceptualised in terms of movement in the 
(%-dimensional space of possible semantic representations, in which the 
state of each sememe unit is represented along a separate dimension. At 

in Hinton and Shallkc (1991). 
%is effcct was sigailkant at the 0.01 level and not at the 0.1 level, as incorrectly stated 
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any instant in processing a word, the entire pattern of activity over the 
sememe units correspond to a single point in semantic space. The exact 
meanings of familiar words correspond to particular alternative points in 
the space. The states of sememe units change over time in such a way that 
the point representing the current pattern of semantic activity moves to 
the point representing the nearest familiar meaning. In other words, the 
pattern corresponding to each known word meaning becomes an attractor 
in the space of semantic representations: Patterns for nearby but unfamiliar 
meanings move towards the exact pattern of the nearest known meaning. 
The region in semantic space corresponding to the set of initial patterns 
that move to a given attractor is called its basin of attraction. The shapes 
and positions of the basins depend on the ways that units interact, which 
in turn depend on thexonnection weights. Hence, we speak of a network 
as developing or building attractors over the course of learning. 

H&S offer an intuitive explanation for co-occurrence of visual and 
semantic influences on errors in terms of the effects of damage in a network 
that builds attractors in mapping between two arbitrarily related domains. 
Connectionist networks have difficulty learning to produce quite different 
ouputs from very similar inputs, yet visually similar words (e-g. CAT and 
COT) often have quite different meanings. One effective way a network 
can accomplish this mapping is to construct large basins of attraction 
around each familiar meaning, such that any initial semantic pattern within 
the basin will move to that meaning (see Fig. 4). 

Onhography 

CAT \ 
COT \ 

BED \ 

Semantics 

FIG. 4 How damage to semantic attractors can causc visual errors. The solid ovals depict 
the normal basins of attraction; the dotted one depicts a basin after semantic damage. 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
T
o
r
o
n
t
o
]
 
A
t
:
 
1
9
:
4
9
 
1
6
 
F
e
b
r
u
a
r
y
 
2
0
1
0



394 PLAUT & SHALLICE 

Visually similar words are then free to generate fairly similar initial 
semantic patterns as long as they each manage to fall somewheie within 
their appropriate basin of attraction. In this way the network learns to 
shape and position the basins so as to “pull apart” visually similar words 
into their final distinct semantics. Damage to the semantic clean-up distorts 
these basins, occasionally causing the normal initial semantic pattern of a 
word to be captured within the basin of a visually similar word. Essentially, 
the layout of attractor basins must be sensitive to both visual and semantic 
similarity, and so these metrics are reflected in the types of errors that 
occur as a result of damage. 

Evaluation of the Model 
The aim of H&S’s work was to provide a unified account of the nature 
and co-occurrence of semantic, visual, and mixed reading errors in deep 
dyslexia. Most previous explanations of why virtually all patients who make 
semantic errors also make visual errors (e.g. Gordon, Goodman-Schul- 
man, & Caramazza, Note 3; Morton & Patterson, 1980) have had to resort 
to proposing lesions at multiple locations along the semantic route. Shallice 
and Warrington (1980) speculated that an inability to access part of the 
semantic system adequately might give rise to the co-occurrence of errors. 
However, H&S actually demonstrated that all of these error types arise 
naturally from single lesions anywhere in a connectionist network that 
builds attractors in mapping orthography to semantics. Only the quantita- 
tive distribution of error types varied systematically with lesion location. 

There are two main types of criticism levelled against the H&S model. 
The first has to do with the limited range of empirical phenomena it addres- 
ses. Of the aspects of deep dyslexia that pose problems for theory, only 
three were modelled-the very existence of semantic errors in reading 
aloud, the frequent co-occurrence of visual errors with semantic errors, 
and the relatively high rates of Occurrence of mixed visual-and-semantic 
errors. However, an adequate theory of deep dyslexia would also need to 
account for a fair number of other aspects of the syndrome. Certain aspects 
(5,  6, and 10, as listed in the Introduction) involve difficulties in mapping 
directly between print and sound and are covered by the assumption of 
the gross impairment in the operation of the nonsemantic route(s). Two 
others, function word substitutions (3) and derivational errors (4), can be 
interpreted as special cases of semantic or mixed visual-and-semantic 
errors, and so can be explained in an analogous fashion (see Funnell, 1987). 
Another two, auditory short-term memory impairments (11) and context 
effects (12), are dismissed by Coltheart et al. (1987) as too vague. How- 
ever, this still leaves the effects of concreteness on reading (7), the effects 
of part-of-speech (8 and 9), and also a number of the additional effects: 
the interactions between the abstractkoncrete dimension and visual errors, 
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confidence. ratings, lexical decision, and the visual-then-semantic errors. 
These phenomena will all be considered directly in this paper. One final 
effect, impaired writing, will be addressed in the General Discussion. 

The second type of criticism of the H&S model relates to its generality. 
H&S argue that the co-occurrence of different error types obtained in deep 
dyslexia is a natural consequence of lesioning a connectionist network that 
maps orthography to semantics using attractors. However, their conclu- 
sions were essentially based on a single type of network that had many 
specific features. This is an inevitable consequence of the fact that the 
design decisions that went into developing the model reflect a tradeoff 
between (at least) three types of constraint: (a) empirical data from cogni- 
tive psychology and neuropsychology, (b) principles of what connectionist 
networks find easy, difficult, or impossible to do, and (c) limitations of the 
computational resources available for running simulations. Although H&S 
attempt to motivate and justify many of their choices, it was only an 
assumption that the specific features of the resulting model did not signific- 
antly contribute to its overall behaviour under damage. Although it is 
clearly impossible to evaluate every possible aspect of the model, a major 
focus of this paper is to identify those aspects which are critical to repro- 
ducing the deep dyslexic error pattern, and those which are less central. 

Overview 
Most attempts to model acquired dyslexia by lesioning connectionist net- 
works (Mozer & Behrmann, 1990; Patterson, Seidenberg, & McCelland, 
1990) have been based on pre-existing models of word reading in normals 
(Mozer, 1990; Seidenberg & McClelland, 1989). These studies have 
primarily aimed to provide independent validation of the properties of the 
normal models that enable them to reproduce phenomena they were not 
initially designed to address. The work of H&S is rather different in nature 
in that they were less concerned with supporting a specific model of normal 
word comprehension than with investigating the effects of damage in a 
fairly general type of network in the domain of reading via meaning. To 
the extent that the behaviour of the damaged network mimicked that of 
deep dyslexic patients, the principles that underly the network's behaviour 
may provide insight into the cognitive mechanisms of reading in normals, 
and their breakdown in patients. In this way, the relevance of H&S's 
simulations to cognitive neuropsychology depends on identifying and 
evaluating those aspects of the model responsible for its ability to repro- 
duce patient behaviour. In this paper, we attempt to provide such an 
analysis. The three main technical sections of the paper, concerning the 
relevance of network architecture, training procedure, and scope of the 
task domain, are summarised next. 
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The Relevance of Network Architecture 

H&S provide only a general justification for the network architecture 
they chose. Hidden units are needed because the problem of mapping 
orthography to semantics is not linearly separable. Recurrent connections 
are required to allow the network to develop semantic attractors, whose 
existence constitutes the major theoretical claim of the work. The choices 
of numbers of intermediate and clean-up units, restrictions on intra- 
sememe connections, and connectivity density were an attempt to give the 
network sufficient flexibility to solve the task and build strong semantic 
attractors, while keeping the size of the network manageable. Some aspects 
of the design, particularly the selective use of intra-sememe connections, 
were rather inelegant and ad hoc. A section entitled “The Relevance of 
Network Architecture” describes simulations involving a range of network 
architectures that attempt to evaluate directly the impact of architectural 
distinctions on the pattern of errors produced under damage. The results 
demonstrate that the qualitative error pattern after damage is surprisingly 
insensitive to architectural deatils, as long as attractors continue to operate 
downstream from the lesion. 

Following the architectural comparisons, we investigate more detailed 
aspects of the pattern of correct and impaired performance shown to vary- 
ing degrees by all of the networks. These considerations serve both to 
verify the generality of the results, and to extend the range of phenomena 
in deep dyslexia accounted for by the modelling approach. 

Generating Phonological Responses. A serious limitation of H&S’s 
work involves the use of proximity and gap criteria in determining the 
response produced by the network under damage. These criteria were 
intended to approximate the requirements of a system that would actually 
generate responses based on semantic activity. H&S provided evidence 
that the main qualitative effects obtained do not depend on specific values 
for these criteria, but their adequacy as an approximation to an output 
system was left unverified. To this end, we develop an output network that 
generates explicit phonological responses on the basis of semantic activity. 
When combined with each of the previously developed input networks, 
the resulting complete implementations of the semantic route replicate the 
co-occurrence of error types, thereby verifying the generality of the original 
results based on response criteria. In addition, lesions to the output net- 
work itself also produce the deep dyslexic error pattern, thus providng an 
account of the similarity among subvarieties of the syndrome. 

Ztem- and Category-specific Effects. The small size of the H&S word 
set raises the possibility that many of the effects arise from idiosyncratic 
characteristics of the word set itself, and not to any real systematic relation- 
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ship between orthography and semantics. We verify that the effects we 
have demonstrated are distributed across the entire word set. ‘We also 
discuss peculiar selective preservation or impairment of performance for 
particular categories after some types of lesions. 

Definitions of Visual and Semantic Similarity. H&S used definitions of 
visual and semantic similarity, in terms of letter overlap and category 
membership, that are analogous to those used for patients. However, these 
definitions only approximate the actual similarity structure of the visual 
and semantic representations of words. We demonstrate that a distribution 
of error types occurs when errors are classified using criteria based on the 
orthographic and semantic proximity of words, indicating that the use of 
the original definitions for visual and semantic similarity does not signific- 
antly bias the results. 

Visual-then-semantic Errors. Visual-then-semantic errors are generally 
assumed to arise from the combined effects of two separate lesions, pro- 
ducing a visual error followed .by a semantic error. We demonstrate that 
they occur after single lesions in our networks, when the damaged input 
network fails to clean-up a visual error completely, which is then misinter- 
preted as a semantically related word by the intact output network. 

Effects of Lesion Severity. Most of our results, as well as those of H&S, 
are based on averaging the effects of lesions resulting in moderate correct 
performance. We investigate the effect of lesion severity on error pattern, 
demonstrating higher overall error rates and a higher proportion of unre- 
lated errors with increasing lesion severity. 

Error Patterns for Individual Lesions. Some issues in deep dyslexia, 
involving the relationship of performance on individual words for the same 
lesion, cannot be addressed if data are averaged across lesions. We show 
that peculiar error combinations, such as reversals like THUNDER+ 
“storm” and STORM + “thunder” by GR (Marshall & Newcombe, 
lM), also occur in our networks. 

The Relevance of Training Procedure 

H&S justify the use of an admittedly implausible learning procedure in 
two ways. The first is to emphasise that they were not directly concerned 
with simulating aspects of the acquisition of reading, but only its break- 
down in mature, skilled readers. Thus, the learning procedure can be 
viewed solely as a programming technique for determining a set of weights 
that is effective for performing the task. The second justification they use 
is to point out that back-propagation is only one of a number of ways of 
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performing gradient descent learning in connectionist networks. Other 
more plausible gradient descent procedures, such as contrastive Hebbian 
learning in deterministic Boltzmann Machines (Hinton , 1989b; Peter- 
son & Anderson, 1987), are more computationally intensive than back- 
propagation but typically develop similar representations. 

In a section entitled “The Relevance of Training Procedure,” we present 
simulations that replicate and extend the H&S results using a deterministic 
Boltzmann Machine (DBM). Specifically, lesions throughout a DBM that 
maps orthography to phonology via semantics produce qualitatively the 
same error pattern as was found with the back-propagation networks. In 
addition, the DBM has interesting computational characteristics that are 
useful for understanding two additional aspects of deep dyslexic reading 
,behaviour: greater confidence in visual vs. semantic errors, and preserved 
lexical decision with impaired naming. 

Confidence in Visual vs. Semantic Errors. Some deep dyslexic patients 
are more confident that their visual error responses are correct as compared 
with their semantic error responses. Two analogues for confidence are 
developed in the DBM: the speed of settling, and the quality of the 
resulting representations. Using both measures, visual errors are produced 
with more confidence than semantic errors after damage. 

Lexical Decision. Deep dyslexic patients can often distinguish non- 
words from words they cannot read. Similarly, the DBM continues to show 
good lexical decision performance after damage when yes responses to a 
letter string are based on the degree to which the string can be re-created 
on the basis of orthographic and semantic knowledge. 

Extending the Task Domain 

A rather severe limitation of the H&S model is that it was trained on 
only 40 words, allowing only a very coarse approximation to the range of 
visual and semantic similarity among words in a patient’s vocabulary. In 
particular, important variables known to affect patients’ reading behaviour, 
such as word length, frequency, syntactic class, and imageabilitykoncrete- 
ness, were not manipulated. Simulations presented in a section entitled 
“Extending the Task Domain: Effects of Concreteness” extend the H&S 
approach to account for effects of concreteness in deep dyslexic reading 
performance. 

Following Jones (1985) and others, we develop a semantic representa- 
tion in which concrete words have “richer” representations, in terms of 
number of active features, than do abstract words. A back-propagation 
network is developed that maps orthography to phonology via these repres- 
entations. Because abstract words have far fewer features, they are less 
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able to engage the semantic clean-up mechanism effectively, and must rely 
more heavily on the direct pathway. As a result, lesions to the direct 
pathway of the input network reproduce the effects of concretenesdimage- 
ability and their interaction with visual errors found in deep dyslexia: better 
correct performance for concrete over abstract words, a tendency for error 
responses to be more concrete than stimuli, and a higher proportion of 
visual errors in response to abstract compared with concrete words. By 
contrast, severe lesions to the clean-up pathway produce the reverse 
advantage for abstract words, similar to the concrete word dyslexic patient, 
CAV (Warrington, 1981). 

The paper concludes with a General Discussion in which we focus on 
the principles that underly the ability of networks to reproduce the charac- 
teristics of deep dyslexia, and their degree of generality. We then evaluate 
the degree to which these computational principles account for the full 
range of patient behaviour. The relationship between the current approach 
and other theoretical accounts of deep dyslexia is considered next. We 
conclude by considering more general issues regarding the impact of con- 
nectionist modelling in neuropsychology . 

THE RELEVANCE OF NETWORK ARCHITECTURE 
Perhaps the most perplexing aspect of connectionist modelling is the design 
of network architecture, by which we mean choices of numbers of units 
and their connectivity. One reason the choices in network design often 
appear rather arbitrary is that they are influenced both by general connec- 
tionist principles and by the specific nature of the task at hand. Unfortu- 
nately, the general principles are rarely made explicit, and the effect of 
particular architectural decisions on different aspects of network behaviour 
in a specific task is often ill-understood. H&S attempt to make explicit 
both the general and specific considerations that went into developing their 
model. The general considerations involve a tradeoff between ensuring 
that the network has sufficient capacity to solve the task, while keeping 
the network as small as possible to stay within available computational 
resources. The specific considerations centre around attempting to facil- 
itate the ability of the network to map between two domains, orthography 
and semantics, which are arbitrarily related. These two types of concerns 
influence the number, size, and interconnectivity of unit layers. 

The simplest architecture would be to connect input units directly to 
output units, but such networks have severe computational limitations that 
prevent them from learning arbitrary associations (Minsky & Papert, 
1969). In general, to accomplish such tasks it is necessary to add at least 
one layer of nonlinear hidden units between the input and output layers 
(Ackley et al., 1985). Because these layers are not part of the input or 
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output, the representations they use must be determined by a general 
learning procedure. Typically only one hidden layer is used because most 
learning procedures slow down exponentially with the number of inter- 
vening hidden layers (see, e.g., Plaut & Hinton, 1987). Such three-layer 
networks are ubiquitous in connectionist modelling because they can learn 
any boolean function with enough hidden units (an exponential number in 
the worst case, but only a polynomial number for most “reasonable” func- 
tions; Denker et al., 1987). 

Jn considering how units are connected, a major architectural distinction 
is between feed-forward and recurrent networks. In a feed-forward net- 
work, unit layers can be ordered such that units receive connections only 
from earlier layers. For a given input pattern, this restriction allows the 
final state of each unit to be computed in a single pass through the network, 
from input to output. However, for this very reason the extent to which 
units in a feed-forward network can interact is extremely limited. In par- 
ticular, feed-forward networks cannot develop attractors because each unit 
in the network only updates its state once-the network cannot reapply 
the unit nonlinearities to clean up a pattern of activity over time. By 
contrast, recurrent networks have no restrictions on how units are con- 
nected, enabling interactions between units within a layer, and from later 
to earlier layers. When presented with input, units must repeatedly recom- 
pute their states, because changing the state of a unit may change the input 
to earlier units. In this way, recurrent networks can gradually settle into 
a stable set of unit states, called ajixedpoint or an attracfor, in which unit 
inputs and outputs remain ~ o n s t a n t . ~  Recurrent networks are particularly 
appropriate for temporal domains, such as language processing (Elman, 
1990) and motor control (Jordan, 1986). They are also more effective at 
learning arbitrary associations because the reapplication of unit non- 
linearities at every iteration can magnify initially small state differences 
into quite large ones. Feed-forward networks require very large weights 
and, hence, very long training time to map similar inputs to quite different 
outputs. Unit interactions in a recurrent network can fill out and clean up 
initially noisy or incomplete patterns, producing behaviour in which the 
initial pattern of activity moves towards the nearest attractor state. 

The existence of attractors for word meanings forms the basis for H&S’s 
explanation of the co-occurrence of visual and semantic errors in deep 
dyslexia. In order to allow such attractors to develop, H&S introduced 
direct connections among closely related sememe units. However, these 
connections only allow pairwise interactions-there is no way for combina- 
tions of sememes to have direct influences. For example, only the conjunc- 

‘In addition to point attractors, recurrent networks can be trained to settle into limit cycle 
(Pearlmutter, 1989) and chnotic attractors (Skarda & Freeman, 1987), but this type of 
behaviour is not directly relevant for our purposes. 
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tion of green and found-woods implies living-neither feature alone does. 
These higher-order semantic micro-inferences (Hinton, 1981) strengthen 
the attractors for words (i.e. increase the sizes and depth of their basins 
of attraction) by filling out the initially incomplete semantics generated 
bottom-up and with only pairwise interactions. In order to implement them 
there must be hidden units that receive connections from some sememe 
units and send connections to others. Although H&S could have used the 
intermediate units for this purpose by introducing feedback connections 
to them from semantics, they chose instead to introduce a second set of 
hidden (clean-up) units as an approximation to the influences of other parts 
of the cognitive system on lexical semantics-these might be thought of as 
including aspects of meaning with less direct influence on naming (e.g. the 
visual semantics of objects; Beauvois, 1982; Shallice, 1987; 1988b). In 
addition, separating the groups of hidden units allows them to specialise 
differently: One group can mediate directly between orthography and 
semantics; the other can make inferences among semantic features. 

A final consideration in architecture design is the pattern of connectivity 
between layers of units. The capacity of a network is largely determined 
by its number of connections, since the weights on these connections 
encode the long-term knowledge used to solve the task. For a given number 
of connections, there is a trade-off between using many sparsely connected 
units versus using fewer densely connected units. Using many units results 
in a higher-dimensional representation in a layer, allowing easier discrim- 
ination between similar patterns in earlier layers. However, because each 
unit is only sparsely connected to layers providing input, the complexity 
of the distinctions it can learn is limited. In particular, as connectivity 
density is reduced it becomes harder for individual units to be sensitive to 
higher-order structure in earlier layers and enforce higher-order coherence 
in later layers. 

Most connectionist networks use complete connectivity between layers, 
but this can result in a large number of connections for networks with even 
a moderate number of units. Full connectivity between layers in the H&S 
network would have resulted in almost 17,000 connections. Networks with 
far more capacity than is required to learn a task tend to approximate a 
table-lookup strategy without capturing any interesting structure in the 
task. Accordingly, H&S chose to include only a random 25% of the pos- 
sible connections between layers, and intra-sememe connections only 
among related semantic features, in order to reduce the network to a 
computationally reasonable size of about 3300 connections. In addition, 
reduced connectivity makes the bottom-up input from orthography to 
semantics relatively impoverished, particularly because the usefulness of 
individual intermediate units is limited by the absence of individual G + I 
connections when input letters are represented by single grapheme units. 
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H&S argued that impoverished bottom-up input to  sememe units encour- 
aged reliance on clean-up interactions, resulting in stronger semantic 
attractors. 

Even among recurrent networks with hidden units that build strong 
attractors with a minimum number of connections, there are a vast number 
of possible network architectures. H&S chose one and demonstrated that 
its behaviour under damage had interesting similarities with the reading 
behaviour of deep dyslexic patients. For computational reasons it is clearly 
not feasible to implement every alternative architecture in order to invest- 
igate the generality of the H&S results. However, it is important to gain 
a better understanding of the relevance of the particular aspects of their 
design. In this section, we develop five alternative architectures that differ 
from the H&S model in terms of numbers of hidden units, connectivity 
density, existence of intra-sememe connections, location of clean-up path- 
way, and separation of intermediate and clean-up units. We then systemat- 
ically lesion each of these networks and compare the effects, in order better 
to understand the impact of architectural differences on behaviour under 
damage. Following this, we take up a number of separate issues concerning 
aspects of the pattern of performance shown to varying degrees by all of 
these networks. These considerations serve both to verify the generality 
of the results, and to extend the range of phenomena in deep dyslexia 
accounted for by the modelling approach. 

Alternative Architectures 

Figure 5 depicts each of the five alternative architectures for mapping 
orthography to semantics. The networks, and the main issues they are 
intended to address, are the following: 

4 0 4 0  Zntra-sememe connections. This network most closely approx- 
imates the original H&S network, with 40 intermediate units, 60 clean-up 
units, and 25% connectivity density. However, it lacks any direct connec- 
tions among sememe units, so it will allow us to investigate the importance 
of such connections. The network has 3252 connections. 

10-Z5d Connectivity density. Rather than using 25% connectivity 
density, the ZO-15d network has complete connectivity between layers. 
Lesions to this network will allow us to evaluate the impact of connectivity 
density (hence the d in the name). In order to keep the number of connec- 
tions approximately the same as the other networks, only 10 intermediate 
units and 15 clean-up units were used. The resulting network has 3134 
connections., 
40-80i Locution of clean-up. This network has clean-up prior to 

semantics, at the level of the intermediate units (hence the i), rather than 
within semantics. We can thus evaluate the importance of the location of 
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c 40 40-60 

10-1 5d 

C semantics .) 

c 80 40-80i 

C 80 1 80fb 

C 40 semantics 

ir 
1 

c 40 40-40fb 

FIG. 5 Five alternative network architectures for mapping orthography to semantics. 
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clean-up on behaviour under damage, and whether. the attractors must be 
semantic in order to produce the H&S results. Specifically, the intermediate 
units are reciprocally interconnected with 80 clean-up units, as well as 
interconnected among themselves. All connection pathways have 25% 
density, for a total of 3226 connections. 
80fb Separation of intermediate and clean-up units. Seidenberg and 

McClelland (1989) propose a framework for mapping among orthography, 
phonology, and semantics. Although they only implement a feed-forward 
version of the orthography-to-phonology mapping, the 80fb network is 
intended to approximate their proposed orthography-to-semantics path- 
way. Specifically, 80 intermediate units both send connections to the 
sememe units, and receive feedback connections (hence the fb) from the 
sememe units. There are no separate clean-up units, and so this network 
allows us to evaluate the importance of having separate groups of units for 
this function. The network has 25% connectivity density, resulting in 3550 
connections. 
4040fb Hybrid architecture. This network is a hybrid of the Seiden- 

berg and McClelland architecture and the H&S architecture. The network 
includes both feedback connections from sememe units to 40 intermediate 
units and a clean-up pathway with 40 units. The intermediate units are also 
intra-connected. Our intention in developing this network is to investigate 
whether having these various means of developing attractors would make 
them more robust. With 25% connectivity density, the network has 3626 
connections. 

In addition to these five architectures, we also develop a replication of the 
original H&S network (as shown in Fig. 3). In developing the five altern- 
ative networks, any mentioned changes from H&S’s original methodology 
do not apply to the H&S replication network. 

The Task 
The task of each network is to generate the semantics of each of the 40 
words used by H&S when presented with its orthography. The semantic 
representations are the same as those used by H&S (see Fig. 1). However, 
orthography is represented somewhat differently, in order to be consistent 
with the simulations described in the section on “Extending the Task 
Domain,” which use a different word set. Instead of using a separate unit 
for each possible letter at a position, each letter is described in terms of a 
distributed code of 8 features, shown in Table 3. The set of features was 
designed to ensure that visually similar letters (e.g. E and F) have similar 
representations, while keeping the number of features to a minimum. Since 
the H&S word set has some Cletter words, a total of 32 orfhographic 
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TABLE 3 
The Assignment of Features to Letters for the Disiributed Orthographic 

Code 

0 1 0 1 0 1 1 0  
101 1 1 0 0 1  
0 0 1 0 1  000 
10111000 
11001000 
11000000 
0 1 1 0 0 0 0 1  
11001 101 
11001 100 

J 
K 
L 
M 
N 
0 
P 
0 
R 

11 100000 
10001011 
1 100000 1 
10000111 
1000001 0 
00111100 
101 10000 
0 0 1  100 10 
101 1001 1 

S 
T 
U 
V 
W 
X 
Y 
Z 

0 0 1 0 0 0 0  1 
11000100 
10100100 
0 0 0 0 0 1  10 
0 0 0 0 0 1  11 
0 0 0 0 1  110 
100001 10 
010000 11 

The meaning of the features are roughly (1) contains avertical stroke; 
(2) contains a horizontal stroke; (3) contains a curved stroke; (4) contains 
a closed part; (5) horizontally symmetric; (6) vertically symmetric; (7) 
contains diagonal stroke; (8) discriminator between otherwise identical 
letters. 

units-in contrast to letter-spe_cific grapheme units-will serve as the input 
layer of each network. 

The Training Procedure 

Each network was trained in the same way as the H&S network, with two 
differences. The first is that the network was allowed to run for eight 
instead of seven iterations to allow information about the input to cycle 
through the clean-up loop and influence the semantic units an extra time. 
The second difference is that the orthographic input presented to each 
network was corrupted by independent gaussian noise with mean 0.0 and 
standard deviation 0.1. Training on noisy input amounts to enforcing a 
particular kind of generalisation: Inputs that are near known patterns must 
give identical responses. Thus, each word’s attractor must be strong enough 
to attract the range of initial semantic patterns that are generated from the 
noisy versions of its orthography. 

Training continued until each network could activate semantic features 
for each word to within 0.1 of its correct value. For each network, the 
following number of sweeps through the set of words was required, in 
increasing order: H&S replication: 333; 4060: 2640; 10-15d: 3625; 
404fb :  4083; 8ofb: 7302; and 404k 14,008. First notice that, although 
training with noisy input should encourage stronger attractors, it takes an 
order of magnitude more training to do so. For the networks trained with 
noise, training required a few thousand sweeps for all but the 4 0 4 i  net- 
work. The reason that this latter network took so much longer is that it 
lacks any interactions among Sememe units, so these units cannot clean 
themselves up into binary responses. They must rely on the clean-up at 
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the intermediate level to eliminate the influences. of noise and to drive 
them appropriately. Driving units into binary responses using only feed- 
forward connections typically involves traversing down the bottom of a 
long shallow ravine in weight space, which requires many sweeps through 
the training set (see Plaut & Hinton, 1987). 

The Effects of Lesions 

Twenty instances of lesions of a range of severity were applied to the main 
sets of connections in each network. A wide range of severities were inves- 
tigated: 0.05, 0.1,0.15,0.2,0.25,0.3,0.4,0.5, and 0.7. Using a proximity 
of 0.8 and a gap of 0.05 as the criteria for a response, correct, omission, 
and error responses were accumulated. Each error response was then 
categorised in terms of its visual and semantic similarity to the stimulus. 
The percentages of overall correct responses and distributions of error 
types were determined for each network. For reasons of space we present 
here only a small selection of the results-for more details, see Plaut (Note 
9). In particular, the basic analyses of the type camed out by H&S are 
given for two networks only, namely the 4060 network (Fig. 6) and the 
40-8Oi network (Fig. 7). Results are averaged over lesion severities that 
produce overall correct performance between 1545%. The number of 
lesion severities falling within this range is indicated in parentheses below 
the label for each lesion location in the error distribution graphs. In addi- 
tion, “Chance” is the distribution of error types if responses were chosen 
randomly from the word set. Its absolute height is set arbitrarily-only the 
relative rates are informative. 

Summary of Architecture Comparisons 

Generality of the Hinton and Shallice Findings 

There are a number of general conclusions that can be drawn from the 
properties of this set of networks. The overall pattern of results with respect 
to correct performance and explicit error rates after lesioning is shown in 
Table 4. Two results are clearly apparent. First, as in the original H&S 
simulations, lesions to the clean-up pathway are less deleterious than those 
to the direct pathway. However, another aspect of the H&S findings does 
not generalise. For some networks, I + S lesions are more damaging than 
0 + I lesions, but for others the opposite effect holds. 

As was true of the H&S network, the rates of explicit errors are rela- 
tively low, &th the highest being just above 30% after 0 --.* I lesions in 
the IO-ISd network. Although the error rates of deep dyslexic patients 
vary considerably, in general they are much higher than after most lesions 
in the network. Weakening the response criteria would increase the overall 
explicit response rate, including errors, but this would also presumably 
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Lesion Severity 
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0 visual 
m visual-and-semantic 
I Semantic 
B Other 

40-60 network (response criteria) 
(b) 

FIG. 6 For the 40-60 network, (a) overall correct performance and (b) error distributions. 
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8 2.0 2 - J  1 
d 
g 1.5 
r;i 

L 

Lesion Severity 
(a) 

cl visual 
El visuat-and-Semantic 
m semantic 

Other 

1.0 

0.5 

0.0 

40-80i network (response criteria) 
(b) 

FIG. 7 For the 40-80i network, (a) overall correct performance and (b) error distributions. 

increase the proportion of unrelated errors. In part, the higher error rates 
of patients may reflect the fact that they have a much larger available 
response set than do the networks. This issue will be addressed more 
thoroughly in the General Discussion. 

The most important simulation findings are those that concern the gener- 
ality of the theoretically critical results obtained by H&S. These fall into 
two parts. H&S’s main conclusion was that all types of error-visual, 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
T
o
r
o
n
t
o
]
 
A
t
:
 
1
9
:
4
9
 
1
6
 
F
e
b
r
u
a
r
y
 
2
0
1
0



DYSLEXIA 81 CONNECTIONIST NEUROPSYCHOLOGY 409 

TABLE 4 
Correct and Error Rates after Lesions of Severity‘0.3 in Each Network 

Direct Pathway Lesions 

0 - 1  1 4 s  

Network Correct Errors Correct Errors 

40-60 21.9 11.8 42.9 4.1 
10-ISd 38.1 31.5 50.1 8.6 
4 0 4 P  27.9 7.1 14.1 0.0 

29.4 13.3 9.6 1.4 
31.5 14.0 46.9 2.5 

sofb 
H&S replication 38.1 5.0 8.4 2.8 
40-40fb 

Clean-up Pathway Lesions 

Network 

40-60 
10-ISd 
4 0 4 P  
sofb 
40-40fb 
H&S replication 

S-, C o r / +  C C + S o r C - + I  

Correct Errors 

85.3 0.4 
80.3 3.0 
56.5 2.5 
91 .o 0.3 
%.O 0.0 
76.0 0.3 

Correct Errors 
-~~ 

74.9 0.4 
81.9 1.4 
59.3 2.3 

90.3 0.3 
25.9 1.4 

- - 

‘S + I lesions are listed under “S + C or I + C,” and the I + S connections 
should be considered part of the clean-up pathway. 

semantic, and mixed--occur with all lesion locations. As illustrated in 
Table 5 ,  with a few minor exceptions concerning lesion sites that give rise 
to very low absolute error rates (all of which are included in the table), 
this finding generalises to all the other networks examined. In particular, 
the success of the 8ofb network in replicating the H&S results demonstrates 
that those results do not depend on having a separate set of clean-up units 
to perform semantic micro-inferences. Intermediate units can learn both 
to convey information about orthography and to interact with semantics 
to form attractors for word meanings. However, using intermediate units 
in +is way has implications for the distribution of error types-in particu- 
lar, the rates of mixed visual-and-semantic errors. A second finding of 
H&S was that mixed visual-and-semantic errors occur more frequently than 
one would expect given the independent rates of visual errors and of 
semantic errors. This finding appears to be less general than the simple 
CO-OCCUfTence of error types. The replication of the H&S network, using 
the original input representation and trained without noise, also exhibits 
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TABLE 5 
Error Distributions Produced by Representative Lesions in Each Network 

Overall Error Rates Conditional Probabilitus 
V & S  

Network Lcsion n Rate Vis V & S  Sem Other Ratio 

0 - 1  7 7.3 46.7 14.9 16.9 21.5 2.76 
40-60 I+S 7 3.7 29.8 16.8 36.5 16.8 0.82 

C+S 6 0.3 - 35.7 50.0 14.3 0.00 

0 - 1  8 25.0 53.4 14.4 10.3 21.9 5.18 
I045d S+C 6 3.6 35.1 32.2 27.0 5.7 1 .M 

C-S 6 0.5 - 60.0 36.0 4.0 0.00 

0 + 1  6 5.3 45.3 22.8 21.3 10.6 2.13 
404Wi I-Ci 7 1.6 9.0 61.8 27.0 2.2 0.33 

I+S 4 0.2 - 40.0 60.0 - 0.00 

041 6 8.1 43.7 21.3 15.2 19.8 2.88 
I+S 4 1.8 11.9 45.8 33.9 8.5 0.35 

- 68.8 18.8 12.5 0.00 S + I  3 0.7 
scyb 

0 - 1  6 9.6 45.0 17.4 18.7 18.9 2.41 
I-S 5 1.7 12.1 31.8 50.0 6.1 0.24 

- 28.6 71.4 - 0.00 C-S 5 0.7 

O + I  7 3.8 30.3 36.5 24.6 8.5 1.23 

C + S  6 1.0 6.1 61.2 32.7 - 0.19 

4e4ofb 

H&SrepIication I-S 5 2.2 8.1 46.5 41.9 3.5 0.19 

Chance Distribution 29.9 6.2 11.8 52.2 2.47 

Data are from lesions that resulted in 1585% correct performance in each network. “n” 
refers to the number of lesion severities producing performance failing within the 1585% 
range, and “Rate” is the average percentage of word presentations producing explicit error 
responses for these lesions. 

‘V&S = visual and semantic. 

higher than expected mixed rates. However, among networks using the 
distributed letter representations and trained with noise, the effect is only 
found when the intermediate units are directly involved in developing 
attractors-the 40-8Oi, 8ofb, and 40- networks, but not the 40-60 and 
IO-ISd networks (compare Figs. 6b and 7b). 

W h y  might these differing patterns of effects occur? One possibility is 
that the 40-60 and 10-ISd networks form strong semantic attractors using 
the clean-up pathway, so that maximum visual similarity effects occur at 
a considerably earlier stage of processing than maximum semantic simi- 
larity effects. Thus, the transformation from visual to semantic similarity 
is realised through separable stages. The replication of the H&S network, 
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DYSLEXIA 81 CONNECTIONIST NEUROPSYCHOLOGY 41 1 

trained without noise, forms weaker semantic attractors using the clean-up 
units, so that more of the work of mapping visual to semantic similarity is 
carried out by the direct pathway. This compresses the stages over which 
visual and semantic similarity operate, and therefore makes interactions 
between them in the stimulus set-the potential for mixed errors-more 
critical. This is also true of the networks in which intermediate units are 
involved in implementing attractors. In these networks, the attractors lie 
at a stage where visual and semantic influences cannot be separated. 

It should be pointed out that this account is somewhat speculative-the 
main point is that the mixed error findings of H&S, although narrowly 
robust, do not generalise to all lesion sites of all connectionist networks. 
It is a consequence of particular characteristics of some network architec- 
tures. 

The Strength of Attractors 

At a more general theoretical level, the argument that H&S put forward, 
of the importance of attractors in the generation of errors, is borne out. 
The robustness of a network t6 lesions of a set of connections, measured 
by the rate of correct performance, increases with the strength of the 
attractors at levels after the locus of damage. At the same time, the rates 
of explicit errors from lesions to these connections also rise. In essence, 
the attractors serve to clean-up both correct and incorrect.responses, 
reducing the number of omissions caused by damage. In contrast, lesions 
at or beyond the level of the last attractors in a network produce a very 
low rate of overt responses, both correct and incorrect. 

This effect can be seen by comparing the 40-60 network with the lU-15d 
network (see Table 4). Both networks use the same input and output 
representations, were trained identically, and develop attractors at the 
semantic level. However, the overall correct performance and explicit error 
rates for the 10-15d network are higher than for the 40-60 network for 
both 0 -P I and I -P S lesions. The 10-15d network develops stronger 
attractors because its full connectivity between layers makes it more effec- 
tive than the 4060 network at implementing semantic micro-inferences 
that depend on the interaction of two or more semantic features on a third. 
The probability that the semantic features involved will be appropriately 
connected to some clean-up unit is 1.0 in the 1U-15d network but quite 
small ( O Z 3  = 0.016) in the 4060 network due to its 25% connectivity 
density. The replication of the H&S network, which it was argued has 
weaker semantic attractors than the 4060 network, is less robust overall 
to lesions of the direct pathway (although the balance between 0 4 I and 
I -P S is reversed) and has lower explicit error rates. 

For the Mi and 8% networks, correct and error rates are compar- 
able to those of the 4060 network for 0 -+ I lesions, which are located 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
T
o
r
o
n
t
o
]
 
A
t
:
 
1
9
:
4
9
 
1
6
 
F
e
b
r
u
a
r
y
 
2
0
1
0



41 2 PLAUT & SHALUCE 

before the level at which their attractors operate.. A different pattern is 
obtained from lesions to I -+ S connections, which are post-attractor for 
the 40-80i network, within-attractor for the 8ofb network, and pre- 
attractor for the 4060 network. Both the correct and error rates are much 
lower for the first two networks than for the 40-60 network (e.g. I -+ S 
[0.3], correct: Mi: 14.1% and 80fb: 9.6% vs. 4060: 42.9%; errors: 
40-80i: 0.2% and 8ofb: 1.8% vs. 4 M :  3.7%).' The very low error rate 
for the post-attractor I + S lesions in the 40-80i network reinforces the 
arguments presented earlier, that the Occurrence of explicit errors depends 
on damaged input being cleaned-up into an incorrect attractor. 

Quantitative Variation in Error Pattern 

For all networks, error rates are much higher for 0 -+ I lesions than 
for I + S lesions, presumably because the output of the undamaged I -+ S 
connections will be more likely to be closer to a word representation than 
will their damaged output. In addition, for the networks that have attrac- 
tors only at the semantic level (H&S replication, 40-60, IO-I5d), both the 
absolute and relative rates of visual errors drop sharply between 0 + I 
and I + S lesions, and the absolute and relative rates of semantic errors 
climb (although the absolute rise is a modest one). This general trend is 
shown directly in the ratio of visual errors to semantic errors for lesions 
closer to orthography compared with lesions closer to semantics (see the 
right-hand column of Table 5). These findings are similar to those obtained 
by H&S and indicate that such networks can give rise to the quantitative 
differences in the distribution of error types found across deep dyslexic 
patients. 

We now turn to a number of separate issues that concern more detailed 
aspects of the pattern of correct and impaired performance shown to vary- 
ing degrees by all of these networks. These considerations serve both to 
verify that the general effects produced by the networks are not due to 
idiosyncratic characteristics of the word sFt or interpretation procedure, 
and also to demonstrate that the networks behave like deep dyslexic 
patients in terms of the pattern of responses after individual lesions. 

Generating Phonological Responses 
Most data on deep dyslexic reading comes from tasks in which the patient 
produces a verbal response to a visually presented word. Since the output 
of each network we have considered thus far consists of a pattern of 
semantic activity, some external prdcedure is needed to convert this pattern 

'Not surprisingly, the hybrid 40-40fb network shows hybrid characteristics. 
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into an explicit response so that it can be compared with the oral reading 
responses of deep dyslexic patients. Following H&S, the procedure we 
have used compares the semantic activity produced by the network with 
the correct semantics of all known words, selecting the closest-matching 
word as long as the match is sufficiently good (the proximity criterion) and 
sufficiently better than any other match (the gap criterion). The rationale 
for these criteria is that semantic activity that is too unfamiliar or 
ambiguous would be unable to drive an output system effectively. How- 
ever, satisfying the criteria only coarsely approximates the requirements 
of an actual output system. In particular, although it may be reasonable 
that semantic activity failing the criteria could not drive a response system, 
no evidence was given that semantic activity satisfying the criteria could 
succeed in generating a response. Also, the criteria are insensitive to the 
relative semantic and phonological discriminability of words and so may 
inadvertently be biased towards producing certain effects. Finally, at a 
more general level, if too much of the difficulty of a problem is pushed off 
into the assumed mechanisms for generating the input or interpreting the 
output, the role of the network itself becomes less interesting (Lachter & 
Bever, 1988; Pinker & Prince, 1988). 

For these reasons, it would be a significant advance over the use of 
response criteria to extend the networks to derive explicit phonological 
responses on the basis of semantic activity. Implementing a full version of 
the semantic route would ensure that the Occurrence of the deep dyslexic 
error pattern under damage is due to properties of the network and not 
to those of an interpretation procedure external to the network. Further- 
more, a number of additional issues can be addressed in a model that maps 
orthography to phonology via semantics that cannot be addressed in a 
network that only derives semantics. Specifically, H&S could consider only 
the input and cenfral forms of deep dyslexia (Shallice & Warrington, 1980). 
Furthermore, they had to assume that the specific nature of the output 
system plays no role in these patients’ reading errors, contrary to many 
theories of deep dyslexia (e.g. Coltheart et al., 1987; Marshall & New- 
combe, 1966). With a full semantic route, it becomes possible to investigate 
directly impairments in deriving phonology from semantics by lesioning 
connections in the phonological output system. In addition, without having 
to apply criteria to semantics, we can investigate the effects of lesions to 
the semantic units themselves. 

Accordingly, we develop an output network analogous to the input net- 
works described earlier, but which takes as input the semantic representa- 
tion of a word and produces a phonological representation. This network 
is then combined with each input network that maps from orthography to 
semantics, resulting in much larger networks that map from orthography 
to phonology via semantics. 
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414 PLAUT & SHALUCE 

The Task 

The input to the output network consists of the 40 semantic representa- 
tions that served as the output of the input networks. A phonological 
representation was defined in terms of 33 position-specific phoneme units 
(see Table 6). For each word, exactly 1 unit in each of 3 positions is active, 
possibly including a unit in the third position that explicitly represents the 
absence of a third phoneme. This representation allows the units that 
represent alternative phonemes in the same position to compete in a 
“winner-take-all” fashion. 

Because damage will impair the ability of the network to derive the 

TABLE 6 
Phonological Representations of the Hinton and Shallice Words 

(a) Phonemes Allowed in Each Position 

Pos. Phonemes 

1 
2 
3 b d g k n m p t -  . 

b d  d y g  h j k I m n p r t 
a ar aw e ew i ie o oa ow u 

(b) Assignment of Phonemes to Words 

Indoor Objects Anha& Body Parts 

BED 
CAN 
COT 
CUP 
GEM 
MAT 
MUG 
PAN 

Ibedl 
Ikanl 
k O t /  

k U p /  
/jem/ 
lmatl 
/mug/ 
/p a nl 

BUG 
CAT 
cow 
DOG 
HAWK 
PIG 
RAM 
RAT 

b u g /  
Ikat l  
Ik o w 4  
/dog/ 
h a w W  

/ram/ 
l ra t l  

/Pip/ 

BACK 
BONE 
GUT 
HIP 
LEG 
LIP 
PORE 
RIB 

IbaW 
Iboanl 

/hip/ 

n i p /  
/p aw 4 
l r i W  

/g u tl 

f l e d  

Foods Outdoor Objects 

BUN 
HAM 
HOCK 
LIME 
NUT 
POP 
PORK 
RUM 

IbUnl 
/ham/ 
/how 
f l i e d  
In u tl 
/Pop/ 
/p aw W 
/rum/ 

BOG 
DEW 
DUNE 
LOG 
MUD 
PARK 
ROCK 
TOR 

b o g /  
/dy ew 4 
/dy ew nl 
f log/ 
/mud/ 
IparW 
/row 
It a w 4  

The letter(s) used to represent phonemes are not from a standard phonemic 
alphabet but rather are intended to have more intuitive pronunciations. Also, the 
definitions are based on British pronunciations (e.g. HAWK and PORK rhyme). 
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correct pronunciations of words, we need some way of deciding whether 
corrupted phonological activity constitutes a well-formed pronunciation. 
Given our phonological representation, a natural criterion is to require 
that exactly 1 phoneme unit be active in each of the 3 positions in order 
to produce a response. However, since units have real-valued outputs 
which are rarely 0 or  1, we need a more precise definition of “active” and 
“inacti~e.’~ The criterion we use is that the most active phoneme at each 
position is included in the response if its likelihood, relative to the com- 
peting phonemes at that position, exceeds a phonologicul response criterion 
of 0.6.6 If, at each position, exactly one phoneme satisfies this criterion, 
the concatenation of these phonemes is produced as the response; other- 
wise, the phonological activity produced by the network is considered ill 
formed and it fails to respond. 

It is important to point out that this type of criterion is quite different 
from the H&S criteria, which ensure that an output is semanticallyfumiliur. 
The criterion we employ does not rely on any knowledge of the particular 
words the network has been trained o n - i t  considers only the form of the 
output representation. Also notice that, under this procedure, there are a 
large number of legal responses other than those the network is trained to 
produce. We call such responses blends because they typically involve a 
phonological blend of known responses (i.e. a literal paraphasia). The 
architecture and training procedure for the output network were designed 
specifically to discourage the production of blends under damage, rather 
than to simulate the development or detailed operation of the human 
speech production system (see Plaut & Shallice, Note 10, for further 
relevant simulation results and discussion). 

The Network Architecture 

Figure 8 depicts the architecture of a complete network that maps ortho- 
graphy via semantics to phonology, using the 4060 input network. The 
output network forms the top half of this complete network, with the 
semantic units (without a clean-up circuit) constituting its input layer. It 
consists of a direct pathway from semantics to phonology via 40 inter- 
mediate units, and a phonological clean-up pathway involving an additional 
20 clean-up units. Only a random 25% of the possible connections in the 
direct pathway are included, but all possible connections in the clean-up 

wore formally. if y, is the output of phoneme unit i, and d, is its smallest differena from 
0 or 1 (i.e. d, = y, if yf S 0.5 and 1 - yi otherwise). then the network produces a rrsponsc 
if, for every position p ,  lldi > 0.6 and exactly one yi > 0.5. The product is the probability 
of the most likely binary OuQut vector at the position when the states of the phoneme units 
are interpreted as independent probabilities. Thus, the response procedure is closely related 
to the maximum-likelihood interpretation of the crosscntropy error function uscd to train 
the network (Hinton, 1989a). 
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20 deanup units 33 phoneme units 

. 
60 deanup units 68 sememe units 

c*s 
40 intermdate units 

28 gapheme units 

FIG. 8 The architecture for mapping orthography to phonology via semantics. Notice that 
the names of sets of connections involving the intermediate and clean-up units in the 
phonological output network are subxripted with a p to differentiate them from the 
corresponding sets of connections in the input network. 

pathway are included.'This full connectivity density allows the output net- 
work to develop strong phonological attractors, much like the semantic 
attractors of the I045d network.' The output network has a total of 2745 
connections. 

The Training Procedure 

Our training strategy will be to develop the output network increment- 
ally. Training parts of the network separately at the outset encourages each 
part to accomplish as much of the task as possible, without relying on the 
strengths of the other parts. It should be mentioned that, although the 
approach of developing phonological attractors independent of semantics 
is primarily computationally motivated, it is not unreasonable on empirical 
grounds that attractors for word pronunciations might develop as part of 
the process of learning to speak before these attractors would become 
available in reading. 

The phonological clean-up pathway of the output network was trained 
to produce the correct phonemes of each word during the last 3 of 6 

'A second output network architecture, which included additional connections among 
phoneme units within each position, was also investigated, and produced qualitatively similar 
results as the output network described here (see Plaut, Note 10). 
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iterations when presented with these phonemes corrupted by gaussian 
noise with a standard deviation of 0.25. Because the phoneme’ units are 
both the input and output units for this stage of training, the phonemes 
cannot be presented by clamping the states of these units. Rather, these 
units were given an external input throughout the 6 iterations which, in 
the absence of other inputs, would produce a specified corrupted activity 
level. This technique is known as SOB clamping. The direct pathway was 
trained to produce the phonemes of each word from the semantics of each 
word, corrupted by gaussian noise with standard deviation 0.1. The input 
units were clamped in the normal way. Each pathway was trained to acti- 
vate the phoneme units to within 0.2 of their correct values for a given 
input. After very extensive training they accomplished this in general, but 
the amount of noise added to their inputs made it impossible to guarantee 
this performance on any given trial. For this reason, training was halted 
when each pathway met the stopping criteria over 10 successive sweeps 
through the training set. 

The separately trained clean-up and direct pathways were then com- 
bined into a single, complete output network. This is straightforward 
because the two pathways have nonsverlapping sets of connections, except 
for the biases of the phoneme units. For these, the biases from the clean-up 
pathway were used. The network was then given additional training with 
noisy input, during which only the weights in the direct pathway were 
allowed to change. In this way the direct pathway adjusted its mapping to 
use the fixed phonological clean-up more effectively in generating correct 
word pronunciations. 

Finally, separate copies of the output network were attached to each 
input network and given a final tuning to ensure that the output network 
operated appropriately when its input was generated over time by an actual 
input network, rather than being clamped. The weights of the input net- 
works were not allowed to change, so that they continued to derive the 
correct semantics for each word. After this final training, which took at 
most a few hundred additional training sweeps, each complete network 
would derive the semantics and phonology of each word correctly from its 
orthography. 

The Effects of Lesions 

Twenty instances of lesions of the standard range of severity were 
applied to the main sets of connections, as well as to the semantic units, 
in each extended network. Correct, omission, and error responses were 
accumulated using phonological response criteria of 0.6, as described ear- 
lier. The percentages of overall correct responses and distributions of error 
types were then determined for each network. Again, in the interest of 
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space and for ease of comparison, we present detailed analyses only when 
the output network is attached to the 40-60 input network. 

Figure 9 presents the overall correct rates of performance after lesions 
throughout the extended 40-60 network. Compared with the use of 
response criteria (see Fig. 6a), the output network makes the 4060 net- 

8 ##$ 

+--0 CP-P 
e--.e P = S p  *--..--+ Ip=>P 
*-• S=>Ip 

Lesion Severity 
(b) 

FIG. 9 Overall correct performance of the extended 4-60 network after (a) input and 
central lesions, and (b) output lesions. 
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work somewhat more sensitive to lesions-on average, correct perform- 
ance is 14.2% lower. However, the relative levels of impaiiment for 
different input lesion locations remains the same, with 0 --., I lesions pro- 
ducing the greatest impairment and S + C lesions producing the least. 
Also, lesions to the semantic units are far more debilitating than lesions 
to the connections in the clean-up pathway. Output lesions reduce correct 
performance by 12.2% more, on average, than the corresponding input 
lesions. The impairment after Cp + P lesions is far worse than the corres- 
ponding C + S lesions. However, compared with 0 --., I lesions, S + Ip 
lesions are less detrimental. 

Figure 10 shows the distribution of error rates for all lesions of the 
extended 4060 network. In addition to visual and semantic similarity, 
errors can now be phonologically similar-that is, have overlapping 
phonemes. Since visual and phonological similarity typically co-occur, we 
considered an error to be phonological only if it was more phonologically 
than visually similar (e.g. HAWK /h aw W and PORK /p aw w). In addi- 
tion, some potential errors are appropriately categorised as phonological- 
and-semantic under this definition (e.g. DEW /dy ew -/ and DUNE 
/dy ew n/). It should be pointed out that errors categorised as visual or 
mixed visual-and-semantic may actually result from phonological rather 
than visual influence-the current word set does not contain enough words 
that dissociate visual and phonological similarity to investigate the relative 
contribution of these two influences. We will take up the issue of distin- 
guishing the influences of visual and phonological similarity on errors in 
the General Discussion. 

Compared with the corresponding data using the response criteria (see 
Fig. 6b), the extended 4060 network shows a somewhat lower rate of 
semantically related and unrelated errors with early lesions (0 + I and 
I + S), but in general the error patterns are rather similar. Semantic clean- 
up lesions now produce significant error rates because of the attractors 
provided by the output network. The distributions of these errors are 
roughly similar to the distributions for earlier lesions. By contrast, lesions 
to the semantic units themselves leads to a stronger bias towards semantic 
similarity in errors. 

Lesions to the direct pathway of the output network (S + Ip and 
Ip + P) produce error patterns much like input lesions, although there is 
a slightly greater bias towards semantic errors relative to visual/phono- 
logical errors. These latter errors almost certainly reflect phonological 
rather than visual similarity.* However, most striking is the extremely low 

*It is still possible that errors produced by damage after semantics would show influences 
of visual similarity. The output network receives input from semantics before its activity has 
settled correctly. and the initial semantic patterns are influenced by visual similarity (see 
Fig. 4). However, this effect on errors due to damage in the output network is likely to be 
small relative to the effect of phonological similarity. 
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error rate for lesions within the phonological clean-up pathway (P + Cp 
and Cp + P). Although many words can still be read corrt?ctly with 
impaired clean-up-average correct performance after these lesions is 
50.3%-it is very rare that phonology will be cleaned up into a well-formed 
pronunciation. In this way, phonological clean-up lesions produce 
behaviour much like semantic clean-up lesions in networks with no phono- 
logical output system-in both cases, lesions to connections that impleqent 
the last level of attractors result in very low rates of explicit errors. This 
result provides direct support for H&S’s claim that attractors are critical 
for producing error responses. 

Except for phonological clean-up lesions, the rates of visual, mixed 
visual-and-semantic, and semantic errors, relative to the rates of other 
errors, is greater than predicted by chance for all lesion locations. Thus, 
lesions anywhere along a pathway from orthography to phonology via 
semantics produce qualitatively similar patterns of errors. In this way, the 
implication from H&Ss results, that the mere Occurrence of particular 
error types is insufficient to determine a patient’s lesion location, appears 
to generalise to lesions all along the semantic route. In addition, the fact 
that lesions to a full implementation of the semantic route produce qualita- 
tively similar error patterns as when responses are based on criteria applied 
to semantics provides support for the validity of our architectural compar- 
isons based on networks that only map orthography to semantics. 

Item- and Category-specific Effects 

The small size of the H&S word set raises the possibility that many of the 
effects arise from idiosyncratic characteristics of the word set itself, and 
not to any real systematic relationship between orthography and semantics. 
In particular, it is possible that only a handful of words account for most 
of the errors. In this section we address the extent to which the effects we 
have demonstrated are distributed across the entire word set. 

Considering correct performance first, although there is a reasonable 
amount of variability among words, it is not the case that some words are 
always impaired or intact regardless of the type of damage. Thus, for the 
4060 network using the response criteria, overall correct rates per word 
vary between 34.6% (LOG) and 81.5% (CAT). The pattern of overall 
correct performance depends somewhat on how output is generated, 
although the correlation between the correct rates using the response 
criteria and those using the output network is moderate but significant 
(0.47, P < 0.005). 

There are also some systematic differences in correct performance across 
categories. In fact, particular lesions in some networks can produce quite 
dramatic category effects that are even more pronounced than those 
observed by H&S. For example, C + S(0.7) lesions in the Z0-15d network 
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produce a striking selective preservation of animals (78% correct) and 
selective impairment of body parts (3% correct) relative to other categories 
(35% average correct), as well as relative to other lesions yielding similar 
overall correct performance, such as I + S(0.4) (32% average correct). 
Interestingly, the M f b  network also shows a selective preservation of 
animals after C + S(0.7) lesions (96% correct), but now foods and outdoor 
objects (31% and 26% correct), rather than body parts (56% correct), are 
selectively impaired. The nature of the selective deficits observed after 
damage appears to have as much to do with the particular characteristics 
of individual networks as with the relationship among semantic represen- 
tations. In fact, the selective preservation of foods found by H&S did not 
arise in a second network that only differed from the first in its initial 
random weights-a type of variation typically not considered important 
(but see Kolen & Pollack, 1991). Clearly more research is required to 
understand these effects. 

Turning to a consideration of item effects in error responses, we will 
take the 4060 network as an example, as it is the closest to the original 
H&S model. Visual errors are distributed throughout the word set. Only 
four of the words, BED, PIG, RAT, and HIP, produce no visual errors 
for any of the lesions. For the rest of the words there is a wide range of 
rates, with the highest being for COT and PORE, both having about four 
times the average rate. In fact, there is a significant correlation (0.49, 
P < 0.005) between the observed visual error rates and the expected rates 
given the distribution of visual similarity throughout the word set. Thus, 
the distribution of visual errors across words is relatively unbiased with 
respect to visual similarity. 

Semantic errors are somewhat less uniformly distributed. Nine of the 
words produce no semantic errors, whereas DOG produces almost twice 
as many as the word with the next highest rate, GEM. Outdoor objects 
have a uniformly low rate of semantic errors, whereas the rates for body 
parts are relatively high and distributed throughout the category. The 7 
words with the highest rates account for 56% of the semantic errors, with 
the remaining errors spread across all but 9 of the 33 remaining words. 
The correlation of the distribution of semantic errors with that expected 
from the semantic similarity of the word set is marginally significant (0.30, 

In contrast, the network shows a strong bias to produce mixed visual- 
and-semantic errors for particular pairs of words. Almost half (18) of the 
words do not produce any mixed errors. Of the remaining words, the top 
3 (PAN, HIP, and LIP) account for 45% of the errors; the top 6, over 
65%. There is no correlation (0.09 ns) between the distribution of mixed 
errors across words and the distribution of visual-and-semantic similarity. 

Overall, the variation of the rates of various types of errors across words 

P c 0.06). 
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demonstrates that the effects in error patterns produced under damage do 
not arise from idiosyncratic characteristics of a few words. A'possible 
exception is the mixed visual-and-semantic errors-the one theoretically 
important topic where the original H&S findings did not generalise con- 
sistently. However, the considerable degree of variability of error types 
across categories raises a concern about the use of these categories in 
defining semantic similarity. In the next section we address this issue 
directly. 

Definitions of Visual and Semantic Similarity 
Following H&S, we have considered a pair of words to be visually similar 
if they overlap in at least one letter, and semantically similar if they come 
from the same category. These definitions are intended to approximate the 
criteria used in categorising the reading responses of patients. However, 
they are at best only coarse approximations. In particular, our definition 
of visual similarity is considerably more lax than that used for patients, 
where typically a stimulus andbresponse must share at least 50% of their 
letters to be considered a visual error (Morton & Patterson, 1980). 

In order to ensure that our results are not biased by the particular 
definitions of similarity we used, we reclassified the errors produced by the 
4fMW network using criteria for visual and semantic similarity based on 
the actual proximity values of each stimulus-response pair. For ease of 
comparison, the values of these criteria were defined so that the incidence 
of error types among all word pairs occumng by chance approximated that 
for the original definitions. Specifically, a pair of words was considered 
visually similar if the proximity of their orthographic representations was 
greater than 0.55, and semantically similar if the proximity of their semantic 
representations was greater than 0.47. Although these criteria result in 
only a 0.5% decrease in the incidence of visual similarity and a 1.3% 
increase in the incidence of semantic similarity, they significantly change 
the distributions of these similarities over word pairs. This is because prox- 
imity is based on shared features, so that letters can resemble other letters 
without being identical, and words can be semantically related without 
being in the same category. As a result, there is only a 0.64 correlation 
between the assignment of visual similarity using letter overlap and using 
the proximity criterion. The correlation for semantic similarity is only 0.72. 
For both, only about threequarters of the word pairs that are similar using 
the original definitions remain so using the proximity criteria. 

Nonetheless, for lesions to the 40-60 network, the distribution of error 
types using the proximity-based definitions of visual and semantic similarity 
is remarkably similar to the distribution obtained with the original defini- 
tions (shown in Fig. 6b). When the response criteria are used, the only 
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significant difference is that the proximity-based definitions result in a 
lower rate of other errors for lesions of the direct pathway. Thus,.many of 
the error responses that are considered unrelated to the stimulus when 
using the original definitions do actually reflect the influences of visual or 
semantic similarity when measured more accurately. However, it should 
be noted that other errors still occur, as they do in patients. This effect is 
not apparent when using the output network, although 0 + I lesions do 
produce a slightly higher rate of semantic errors with the proximity-based 
definitions. Overall, the similarity of the pattern of results indicates that 
the use of the original definitions for visual and semantic similarity, in 
terms of letter overlap and category membership, does not significantly 
bias the results. 

Visual-then-semantic Errors 

In addition to producing error responses that are directly related to the 
stimulus either visually or semantically, deep dyslexic patients occasionally 
produce errors in which the relationship between stimulus and response is 
more complex. For example, Marshall and Newcornbe’s (1%) patient GR 
read SYMPATHY as “orchestra.” They considered this a visual error, 
SYMPATHY --* “symphony,” followed by a semantic error, SYM- 
PHONY + “orchestra,” and so termed it a viswl-then-semantic error. 
Subsequently, this type of error has been observed in a number of other 
deep dyslexic patients (see Coltheart, 1980a)-other examples include 
STREAM + (steam) + “train” by HT (Saffran, Schwartz, & Marin, 
1976); FAVOUR + (flavour) -+ “taste” by DE and COPIOUS + 
(copies) -+ “carbon” by PW (Patterson, 1979). Although visual-then- 
semantic errors are quite rare, the possibility of their occurrence at all is 
rather perplexing, and certainly theoretically relevant. We know of no 
attempt to explain them other than Marshall and Newcombe’s (1973, 
p. 186) remark that they are “compound mistakes which are a function of 
misperception plus semantic substitution.” They are generally assumed to 
arise from the effects of two separate lesions. 

Given that visual-then-semantic errors are an acknowledged charac- 
teristic of deep dyslexic reading, the question arises as to whether they 
occur after single lesions to our networks. Because the stimulus and 
response of a visual-then-semantic error are neither visually nor semantic- 
ally related, up until now we would classify such errors as other. Hence, 
we analysed the other errors produced by the 4060 network to determine 
whether some of them are more appropriately classified as visual-then- 
semantic. A visual-then-semantic error occurs when the stimulus and 
response are unrelated, but there is a third word, which we wil l  call the 
bridge, that is visually related to the stimulus, semantically related to the 
response, and is directly involved in producing the error. This last point is 
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assumed for patient errors because the likelihood of a response being 
appropriately related to the stimulus by chance is assumed to be negligible. 
However, in the simulations the small size of the word set and high chance 
rate of visual and semantic similarity make it necessary to demonstrate 
that the relation of the presumed bridge word to the stimulus and response 
does not arise merely by random selection from the word set. 

When using the criteria to generate responses, for each other error we 
identified the potential bridge word as the one whose semantics had the 
second-best match to those generated by the network under damage (the 
best matching word is the response). If this word was visually related to 
the stimulus and semantically related to the response, we considered the 
error to be visual-then-semantic. Of the 114 other errors produced by the 
40.60 network, 49 (43.0%) satisfied these criteria. The chance rate of 
visual-then-semantic errors can be calculated by estimating how often the 
next-best matching word would meet the criteria even if it had no influence 
on the error. This rate is just the chance rate that the bridge is visually 
related to the stimulus times the chance rate that it is semantically related 
to the response, given that the response is neither visually nor semantically 
related to the stimulus. The first term is just the overall rate of visual 
similarity for word pairs other than the stimulus and response (29.9%). 
The rate that the bridge and response are semantically related by chance 
is much higher than the overall rate of semantic similarity because the 
bridge word was selected on the basis of how well its semantics match 
those generated by the network (which match the response best). We can 
use as an estimate the rate at which the response and bridge words are 
semantically related over all other errors produced by the network, which 
is 83.3%. Thus, the chance rate of visual-then-semantic errors is approxi- 
mately 24.9%, which is only slightly more than half the observed rate. 

When using an output network, it is possitle for the response generated 
at the phonological layer to differ from the best matching word at the 
semantic layer (even with the output network intact). Under these condi- 
tions we can apply a more conservative, but also more informative, defini- 
tion of visual-then-semantic errors. Specifically, for each error in which 
the stimulus and response are unrelated, we can use the best-matching 
word at the semantic layer as the potential bridge word. If this word is 
visually related to the stimulus and semantically related to the response 
(but not identical or it would be a visual error), the other error is considered 
to be visual-then-semantic. It is clear that the bridge word is playing a role 
in the error because the phonological response is based solely on the gener- 
ated pattern of semantic activity, which is most similar to that of the bridge 
word. Of the 97 other errors produced by input lesions to the 4&60 network 
with the output network generating responses, 12 (12.4%) satisfy the 
criteria for visual-then-semantic errors (e.g. BOG + [dog] -P “rat”). In 
contrast, only 4 of the other errors (4.1%) involve semantic similarity 
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followed by visuallphonological similarity (e.g. COW + (pig) + “pan”). 
Although the chance rate of this type of error is the same as for visual-then- 
semantic errors, it is observed much less frequently, both in patients and 
in the network. 

For some of the visual-then-semantic errors (e.g. BOG + [pig: prox 
0.91, gap 0.101 + “ram”) the generated semantics match those of the 
bridge word well enough to satisfy the response criteria (for a visruzl error). 
Even so, the semantics are sufficiently inaccurate that the (intact) output 
network produces a semantic error. All but one of the visual-then-semantic 
errors were caused by damage to the direct pathway, with most arising 
from 0 --.* I lesions. This makes sense given that, under our definition, 
visual-then-semantic errors consist of a visual confusion in the input net- 
work followed by a semantic confusion in the output network. In a sense, 
we interpret visual-then-semantic errors as visual errors gone awry under 
semantic influences. Because the damaged input network fails to clean up 
the visual error completely, the output network is given somewhat cor- 
rupted input. Even though it is intact, it may misinterpret this input as a 
semantically related word. 

Effects of Lesion Severity 

To this point, all of the data we have presented on the relationship between 
types of errors have been averaged over a range of lesion severities, typi- 
cally over those producing correct performance between 1545%. How- 
ever, it is possible that the distribution of error types changes with lesion 
severity. In addition, the extent of this effect may be influenced by the 
nature of the output system employed. Rather than present detailed data, 
we simply describe the effects that hold for all of the network architectures. 

The most basic effect is that error rates increase with lesion severity. 
Our main motivation for averaging only over lesions producing a limited 
range of correct performance in previous analyses is that, otherwise, the 
results would be dominated by effects from the most severe lesions, which 
often do not show the typical distribution of error types. In addition, the 
correct performance of most of the patients we are considering falls within 
this range. 

What is more interesting than the fact that absolute error rates rise with 
lesion severity is that the distribution of error types changes. Specifically, 
the rates of visual and other errors rise more quickly with increasing lesion 
severity than the rates of semantic and mixed visual-and-semantic errors. 
If the same data is reinterpreted in terms of the proportion of each error 
type, then the proportion of ekor responses that are unrelated to the 
stimulus increases steadily as performance gets worse. The proportions of 
the remaining error types all decrease at about the same rate, both when 
using the response criteria and the output network. Thus, for the moderate 
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lesions we consider the relative proportions of the various error types do 
not change drastically with lesion severity, and so our decision ta  average 
over lesions producing moderate correct performance appears warranted. 

Error Patterns for individual Lesions 
The procedure we have used for lesioning a set of connections involves 
randomly selecting some proportion of the connections and removing them 
from the network. In order to ensure that the ensuing effects are not 
peculiar to the particular connections removed, we carry out 20 instances 
of each type of lesion and average the results across them. On the other 
hand, it must be kept in mind that the model is compared with individual 
patients, each of whom have a particular lesion. In a sense, for a given 
simulation experiment with 4 locations of 9 severities of lesion, we are 
creating 720 simulated patients, with a relatively high proportion of them 
displaying the characteristics of deep dyslexia. However, there are some 
issues in deep dyslexia, involving the relationship of performance on indi- 
vidual words for the same lesion, that we have been unable to address to 
this point. 

One issue concerns the correct performance on words that are given as 
responses in errors. Some theories of reading errors in deep dyslexia (e.g. 
Morton & Patterson, 1980) assume that a word produces an error when 
its lexical entry is missing from some lexicon, with a closely matching word 
whose lexical entry is present being given as the response. If we also assume 
that words are read correctly when their entries are present in the lexicon, 
such a theory predicts that words given as responses in errors should always 
be read correctly. 

In fact, patients usually, but not always, adhere to this pattern. For 
example, DE read SWEAR as “curse” but then gave the response “I don’t 
know” to CURSE as stimulus (K. Patterson, personal communication). 
GR gave no response to SHORT or GOOD, but produced the errors 
LI’ITLE “short” and BRIGHT -+ “good,” as well as the errors 
BLUE --* “green” and GREEN + “peas” (Barry & Richardson, 1988). 
In fact, at another time GR read correctly only 54% of words he had 
previously given as responses in semantic errorsjust  slightly better than 
his original correct performance of 45% (Marshall & Newcombe, 1966). 

If we examine the pattern of correct and incorrect performance for 
individual lesions of the 4060 network when using the response criteria, 
we find that only 64.1% of the words given as the response in an error are 
read correctly; 31.2% of error responses produce an omission and 4.6% 
lead to another error. The high rate of omissions may simply be due to 
our stringent criteria for overt responses. However, the fact that 4.6% of 
error responses produce errors when presented as stimuli clearly violates 
the prediction of a theory that explains errors in terms of missing lexical 
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entries. In the damaged network, the attractor for a word is not either 
present or absent, but rather it can effectively operate to produce a 
response given some inputs but not others. 

It is possible for an even more perplexing relationship to hold among 
the words producing errors in a patient. It has been observed that a pair 
of words may produce each other as error responses. For example, GR 
produced THUNDER + “storm” and STORM + “thunder” (Marshall 
& Newcombe, 1966), while DE produced ANSWER + “ask” and 
ASKED + “answer” (K. Patterson, personal communication). It is hard 
to imagine how a mechanism that maps letter strings to pronunciations via 
meaning might possibly produce such behaviour under damage. 

Such response reversals occur in our simulations, but they are very rare. 
None are found in the corpus of errors produced by the 4060 network. 
However, both the lO-25d and 40-80i networks produce a few of them 
when using the response criteria. For example, a 0 .--* I(O.l) lesion to the 
ZW5d network resulted in the visual errors MAT-, “mud” and 
MUD ---* “mat;” a 0 + I(0.7) lesion produced the visual errors 
MUG + “nut” and NUT + “mug.” Similarly in the W O i  network, a 
0 I(0.3) produced the other errors MUG + “hock” and 
HOCK --., “mug;” a 0 + I(0.7) lesion produced the mixed visual-and- 
semantic errors HIP + “lip” and LIP + “hip.” 

How might a network produce such response reversals? Recalling Fig. 
4, we can interpret damage to the direct pathway as corrupting the initial 
pattern of semantic activity derived from orthography. One explanation 
for the existence of response reversals is that the attractors for words are 
sensitive to different aspects of this pattern. For example, suppose that the 
attractor for HIP depends on some particular set of initial semantic features 
to distinguish it from LIP, but the attractor for LIP depends on a differenr 
set to distinguish it from HIP (this cannot be represented in a two-dimen- 
sional rendition of semantic feature space like that in Fig. 4). If both of 
these sets of features are lost due to a particular lesion, the errors 
HIP .--* “lip” and LIP 4 “hip” are both possible. In essence, an explana- 
tion for response reversals must allow a more complicated interaction 
between orthographic and semantic information than is typically provided 
in theories based on discrete lexical entries for words. 

Summary 

An examination of the effects of lesions on five alternative architectures 
for mapping orthography to semantics has served both to demonstrate the 
generality of the basic H&S results as well as to clarify the influences of 
aspects of network architecture on the detailed pattern of errors. Extending 
networks to generate phonological output on the basis of semantics leads 
to qualitatively similar effects under damage as does applying criteria to 
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semantics. A consideration of more specific effects at the level of individual 
lesions, error types, and words reinforced the correspondence of network 
and patient behaviour. 

Perhaps the most general principle to emerge from these experiments 
is the importance of the nature of the attractors developed by the network. 
Although network architecture can have a strong influence on this process, 
ultimately it is the learning procedure that derives the actual connection 
weights that implement the attractors. Thus, it is important that we 
evaluate whether the nature of the attractors, and hence the behaviour 
they exhibit under damage, are the result of specific characteristics of the 
back-propagation learning procedure, or whether the results would gener- 
alise to other types of attractor networks. The next section addresses this 
issue by attempting to replicate and extend the results obtained thus far 
using a deterministic Boltzmann Machine. 

THE RELEVANCE OF TRAINING PROCEDURE 
Learning plays a central role in connectionist research. The knowledge 
needed to perform a task must be encoded in terms of weights on connec- 
tions between units in a network. For tasks that involve fairly simple con- 
straints between inputs and outputs, it is sometimes possible to derive 
analytically a set of weights that is guaranteed to cause the network to 
settle into good solutions (Hopfield, 1982; Hopfield & Tank, 1985). How- 
ever, for tasks involving more complex relationships between inputs and 
outputs, such as mapping orthography to phonology via semantics, correct 
behaviour requires such highly complex interactions among units that it is 
no longer feasible to hand-specify the weights between them. In this case, 
it is necessary to rely on a learning procedure that takes these interactions 
into account in deriving an appropriate set of weights. 

Although the error on a task is the result of the combined effects of all 
the weights, the crux of most learning procedures is a simplification that 
calculates how each weight in the network should be changed to reduce 
the error assuming the rest of the weights remain B e d .  A natural way to 
change the wei@ is in proportion to its influence on the error-that is, in 
proportion to the partial derivative of the e m o r  with respect to the weight. 
Although the weight changes are calculated as if other weights will not 
change, if they are small enough their collective effect is guaranteed to 
reduce (very slightly) the overall error. 

In understanding this procedure, it helps to think of a high-dimensional 
space with a dimension for each weight. This may be easiest to imagine 
for a network with only two weights. Each point in this space-a plane in 
two dimensiondefines a set of weights that produces some amount of 
errof if used by the network. If we represent this error along an additional 
dimension corresponding to height, then the error values of all possible 
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weight sets form an error surface in weight space (we Fig. 11). A good set 
of weights has low error and corresponds to the bottom of a valley in this 
surface. At any stage in learning, the network can be thought of as being 
at the point on the error surface above the point for the current set of 
weights, with a height given by the error for those weights. Possible weight 
changes consist of movements in different directions along the surface. 
Changing each weight in proportion to its error derivative amounts to 
moving in the direction of steepest descent. Often, learning can be accel- 
erated by using the error derivatives in more complex ways in determining 
how far and in what direction to move in weight space, although the issues 
regarding the application of these techniques can be separated from those 
concerning the calculation of the error derivatives themselves. 

The most widespread procedure for computing error derivatives in con- 
nectionist networks is back-propagation (Bryson & Ho, 1969; le Cun, 1985; 
Parker, Note 7; Rumelhart et al., 1986a; 1986b; Werbos, Note 11). The 
power and generality of back-propagation has dramatically extended the 
applicability of connectionist networks to problems in a wide variety of 
domains. However, this power also raises concerns about its appropriate- 

FIG. 11 A hypothetical error surface for a network with two weights. The current error is 
plotted as a small box above the point corresponding to the current values of the weights 
(Weight 1 = -0.7, Weight 2 = 0.3). The error for the optimal set of weights (Weight 1 = 0.3. 
Weight 2 = -0.2) is also plotted (as an asterisk). Gradient descent learning involves 
modifying the current weights such that the point corresponding to their errors moves 
downhill along this surface, eventually amving at the optimal point. 
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ness for the purposes of modelling in cognitive psychology and neuro- 
psychology. In particular, the procedure uses information in \kays that 
seem neurophysiologically implausible-a straightforward implementation 
of the procedure would require error signals to travel backward through 
synapses and axons (Crick, 1989; Grossberg, 1987). As such, it seems 
unlikely that back-propagation is what underlies human learning, and thus 
its use in modelling the results of human learning is somewhat suspect. 

Proponents of the use of back-propagation in cognitive modelling have 
replied to this argument in two ways. The first is to demonstrate how the 
procedure might be implemented in a neurophysiologically plausible way 
(e.g. Parker, Note 7). The more common reply, and the one adopted by 
H&S, is to argue that back-propagation is only one of a number of pro- 
cedures for performing gradient descent learning in connectionist net- 
works. As such, it is viewed merely as a programming technique for 
developing networks that perform a task, and is not intended to reflect 
any aspect of human learning per se (although see, e.g., Bates & Elman, 
1993; Elman, in press; Karmiloff-Smith, 1992; McClelland & Jenkins, 
1990; Plunkett & Sinha, 1991; Seidenberg & McClelland, 1989, for altern- 
ative views on the relevance of connectionist modelling to issues in cogni- 
tive development). The implicit claim is that back-propagation develops 
representations that exhibit the same properties as would those developed 
by a more plausible procedure, but does it much more efficiently. However, 
this claim is rarely substantiated by a demonstration of the similarity 
between systems developed with alternative procedures.’ 

In this section, we attempt to replicate the main results obtained thus 
far with back-propagation, within the more plausible learning framework 
of contrastive Hebbian learning in a deterministic Boltzmann Machine 
(DBM). Following a brief description of the framework, we define an 
architecture for mapping orthography to phonology via semantics similar 
to the architectures used with back-propagation. After training the net- 
work, we compare its behaviour under a variety of lesions and with that 
of the back-propagation networks. In addition to being more plausible as 
a procedure that might underly human learning, the DBM has interesting 
computational characteristics not shared by the back-propagation net- 
works. We conclude the section by demonstrating how these characteristics 
are useful for understanding two aspects of deep dyslexic reading behavi- 
our: greater confidence in visual vs. semantic errors, and preserved lexical 
decision with impaired naming. 

Veny Sejnowski (personal communication) has successfully re-implemented NETtalk 
(Sejnowski & Rosenberg, 1987). a feed-forward back-propagation network that maps 
orthography to .phonology, as a stochastic Boltanann Machine. However, he made no direct 
comparisons of the representations that the two procedures developed. 
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Deterministic Boltzmann Machines 
Deterministic Boltzmann Machines (Hinton, 1989; Peterson & Anderson, 
1987) were originally developed as approximations to stochastic Boltzmann 
Machines (Ackley et al., 1985; Hinton & Sejnowski, 1983). Details on the 
nature of processing and learning in these networks are presented in the 
Appendix-here we only summarise their characteristics. 

In a DBM, the states of units change slowly over time, and all connec- 
tions are bidirectional, so that settling is much more gradual and interactive 
than in the back-propagation networks. In addition, during settling the 
summed inputs to units are divided by a global temperature parameter that 
starts high and is gradually reduced to 1.0-a process known as simulated 
annealing. At the end of settling, the unit states minimise a global energy 
measure, which represents the degree to which the constraints encoded by 
the weights are violated. 

The training procedure, known as contrastive Hebbian learning, involves 
running the network twice for each input. In the negafive phase-roughly 
corresponding to the forward pass in back-propagation-the input units 
are clamped, and the hidden and output units gradually settle into a stable 
pattern of activity that represents the network’s interpretation of the input. 
In the positive phase-corresponding to the backward pass-both the input 
and output units are clamped correctly, and only the hidden units update 
their states. Learning involves changing each weight in proportion to the 
difference in the product of unit states for the positive and negative phases. 
This form of learning is somewhat more biologically plausible than back- 
propagation primarily because information about the correct states of 
output units is used in the same way as information about the input-that 
is, by propagating weighted unit activities, rather than passing error deriva- 
tives backward across connections. 

Both back-propagation and contrastive Hebbian learning can be charac- 
tensed as performing gradient descent in weight space in terms of an 
explicit measure of how well the network is performing the task. This has 
led most researchers to assume that the nature of the representations 
developed by the two procedures in most tasks would be qualitatively 
equivalent. However, the ways in which they compute weight derivatives 
based on unit states are quite different. These differences raise the issue 
as to whether the lesion results we have obtained with back-propagation 
arise only in networks trained with that powerful, rather implausible pro- 
cedure. In order to investigate this issue, we define a version of the task 
of reading via meaning, and describe a DBM architecture for 
accomplishing it. After training the network with contrastive Hebbian 
learning, we systematically lesion it and compare its impaired performance 
with that of damaged back-propagation networks. 
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The Task 
In order to help the DBM learn the structure between the input and output 
patterns (i.e. to reproduce the co-occurrences of unit states), we will use 
a more symmetric version of the task of reading via meaning than was used 
with the back-propagation networks. Specifically, the network will be 
trained to map between orthography and phonology via semantics in either 
direction. This requirement can be broken down into three subtasks: (1) 
generate semantics and phonology from orthography, (2) generate ortho- 
graphy and phonology from semantics, and (3) generate semantics and 
orthography from phonology. Although only the first subtask is strictly 
required for reading via meaning, training on the other subtasks ensures 
that the network learns to model orthographic structure and its relationship 
to semantics in the same way as for phonological structure. Our use of a 
training procedure that involves learning to produce semantics from phono- 
logy in addition to producing phonology from semantics is in no way 
intended to imply a theoretical claim that input and output phonology are 
identicali t  is solely a way of Pelping the network to learn the appropriate 
relationships between semantic and phonological representations. This is 
important if we want to use the energy measure to compare the “goodness” 
of each kind of representation. Also, learning the task in both directions 
should result in stronger and more robust attractors, in a similar way as 
for the back-propagation networks with feedback connections (8% and 
4&&@). In order to make generating orthography as closely analogous 
as possible to generating phonology, we use the original H&S representa- 
tions for letters, involving a position-specific grapheme unit for each pos- 
sible letter in a word. 

The Network Architecture 
Figure 12 depicts the architecture of a DBM for mapping among ortho- 
graphy, semantics, and phonology. The network has 40 intermediate units 
bidirectionally connected with the 28 grapheme units and 68 sememe units, 
and another 40 intermediate units bidirectionally connected with the 
sememe units and 33 phoneme units. Each of these sets of connections has 
full connectivity density. In addition, there is full connectivity within each 
of the grapheme, sememe, and phoneme layers, except that units are not 
connected with themselves. In total, the network has 11,273 bidirectional 
connections. This is about twice the number of connections in one of the 
back-propagation networks. This extra capacity is justified because con- 
trastive Hebbian leaming is not as efficient as back-propagation in using 
a small number of weights to solve a task. 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
T
o
r
o
n
t
o
]
 
A
t
:
 
1
9
:
4
9
 
1
6
 
F
e
b
r
u
a
r
y
 
2
0
1
0



434 PLAUT & SHALLICE 

33 phoneme units 

40 intermediate units 

s e s  
YY 

68 sememe units 

~ ~~ 

40 intermediate units 

G e I  CABGeG 28 grapheme units 

FIG. 12 The DBM architecture for mapping among orthography, semantics, and phonology. 

The Training Procedure 

The procedure used to train the DBM is exactly as described earlier and 
in the Appendix, with a slight elaboration. In order to train the netwdrk 
to perform each of the three subtasks mentioned previously, each presen- 
tation of a word involved three negative phases. In the first of these, the 
grapheme units are clamped to the letters of the word. The remaining 
units, including the sememe and phoneme units, then update their states 
(while the temperature is concurrently annealed) until no unit state changes 
by more than 0.01. In the second negative phase, the semantics of the 
word are clamped correctly, and the network settles into patterns of activity 
over the grapheme and phoneme units. In the third, the phonemes of the 
word are clamped, and the network generates semantic and orthographic 
representations. The pairwise products of unit states in each of these nega- 
tive phases are subtracted from the pending weight changes. The positive 
phase involves clamping the grapheme, sememe, and phoneme units 
appropriately, and computing states for the 2 layers of intermediate units.” 
In order to balance the 3 negative phases, the products of unit states in 
the positive phase are multiplied by 3 before being added into the pending 

“’No settling is required in the positive phase because all of the connections of both sets 
of intermediate units are from units that are clamped, so the summed input to each 
intermediate unit is constant. In this case, the final states that these units would ultimately 
achieve if settling were used can be computed directly using no cascading nor temperature 
in their update functions (i.e. A = 0 and T = 1 in Equation 1 in the Appendix). 
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weight changes. These pending changes are accumulated for each word in 
turn, at which point the weights are actually changed (using a Weight step 

= 0.01 and no momentum) and the procedure is repeated." After slightly 
more than 2100 sweeps through the word set, the state of each grapheme, 
sememe, and phoneme unit was within 0.2 of its correct states during each 
of the 3 negative phases. 

In order to provide a sense of the behaviour of the trained network in 
processing a word, Fig. 13 displays the states of the units in the network 
at various times during the negative phase in which the orthography of the 
word RAT is presented. Because the temperature parameter is very high 
for the first few iterations, most (noninput) unit states are near zero. 
Gradually, units in the first intermediate layer start to become active due 
to direct orthographic input. By around iteration 30, this initial activity 
begins to generate semantic activity, which in turn generates activity in the 
output half of the network by iteration 35. Because only 3 of the 33 
phoneme units should have a positive state for any given word, these units 
have strong negative biases, producing negative states at iteration 40. 
Semantics continue to improve, although they are still far from the correct 
semantics for RAT, as shown by comparison with the states for the last 
iteration. Close inspection reveals that the erroneous semantic features are 
due to contamination with the features for CAT. However, even before 
the semantic pattern settles completely it begins to activate the appropriate 
phonemes-ht the vowel around iteration 50, and then the consonants. 
Between iterations 60 and 75, the phoneme units clearly settle into the 
correct pronunciation. Interestingly, some semantic features are still un- 
decided or incorrect at this state (e.g. the 2 leftmost features, relating to 
size). The correct phonology feeds back to semantics to provide additional 
clean-up, and by iteration 100 all of the semantic features are in their 
correct states. In this way, the DBM behaves quite differently from net- 
works that map from orthography to phonology via semantics in a strictly 
feed-forward manner (i.e. all the back-propagation networks without feed- 
back connections). Having learned to map between semantics and phono- 
logy in both directions, it takes advantage of their interaction to settle into 
the correct representations for each. The settling behaviour of the DBM 
when presented with other words is qualitatively similar, although it should 
be pointed out that, in general, phonology comes in much later than seman- 
tics (see Plaut, Note 9, for details). This is also true of RAT in that m s r  
of the correct semantic features are active prior to the correct phonemes. 

In comparing the training and operation of the DBM with that of the 
back-propagation networks, it is important to keep in mind that processing 

"Although the current simulations involve borch learning, in which all 40 words are 
presented before changing the weights, online learning, in which the weights are updated 
after every word presentation, would have been equally effective. 
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FIG. 13 The states of the DBM at selected iterations in processing the word RAT. Each 
row of the display for an iteration represents a separate layer of units. with grapheme units 
at the bottom, semene units in the long middle row, and phoneme units at the top. The 
second and fourth rows from the bottom are the input and output intermediate units, 
respectively. The state of each unit is represented by the size of a black (for negative) or 
white (for positive) blob. A grey square indicates that the unit has a state near zero. Thus, 
the bottom (orthographic) row for each iteration has three white squares, corresponding to 
the three graphemes of RAT that are clamped on throughout settling. 
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a word in the DBM requires about 40 times more computation.’2 On the 
other hand, the DBM has the significant advantage that it was trained all 
at once-the back-propagation networks had to be trained incrementally, 
using a rather ad hoc procedure in the case of the output networks (see 
the section on “Generating Phonological Responses”). In addition, the 
DBM is performing a more complex task by learning to map between 
orthography and phonology in either direction. However, our major 
interest is to compare the effects of damage on the behaviour of these two 
types of network in reading via meaning rather than the time required to 
learn the task per se. 

The Effects of Lesions 

After training, each of the sets of connections in the DBM were subjected 
to 20 instances of lesions over the standard range of severity. We also 
subjected the semantic units to lesions of the same range of severity, in 
which the appropriate proportion of semantic units are selected at random 
and removed from the networ!. Since we are primarily concerned with the 
task of generating semantics and phonology from orthography, we only 
considered behaviour in the negative phase in which the grapheme units 
are clamped. For each lesion, correct, omission, and error responses were 
accumulated according to the same criteria as those used for the back- 
propagation networks. 

Figure 14 presents the overall correct rates of performance of the DBM 
after lesions throughout the network. Compare these results with the cor- 
rect performance data for the corresponding lesions to the full semantic 
route implementation using back-propagation (based on 40-60 network; 
see Fig. 9). Considering input lesions first, I * S lesions are equally 
debilitating in the two networks, but the DBM is more robust to G ft I 
lesions than the back-propagation network is to 0 -+ I lesions. As a result, 
the standard order of severity of impairment along the direct pathway is 
reversed in the DBM. A comparison of clean-up lesions is complicated by 
the differences in architecture: The back-propagation network has a clean- 
up pathway, whereas the DBM has only intra-sememe connections. In 
general, S c+ S lesions in the DBM impair performance about as much as 
C + S in the back-propagation network. For both networks, lesions to the 
semantic units themselves are far more debilitating than lesions to the 
connections among them, particularly in the DBM. 

”We can approximate the computational demands of presenting a word during learning 
by the number of connections x the number of phases x the number of iterations per phase. 
The DBM has about twice the number of C O M C C ~ ~ O ~ S  and requires 4 phases, compared with 
2 for a back-propagation network (the forward and backward passes). In addition, the DBM 
requires about 10 times more iterations to settle (about 1.50 vs. 14 for one of the back- 
propagation networks). 
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FIG. 14 
(b) after 

*--+ s units 
I S<=>S +------* Ic=>S *-* &=>I 

0.0 0.1 a2 0.3 0.4 0s 0.6 0.7 
Lesion Severity 

(4 - P<=>P 
*------+ Ipc=>P +-* s<=>1p 

Leslon severity 
(b) 

Overall correct performance of the DBM (a) after input and central 
output lesions. 

lesions, and 

As for output lesions, the DBM is somewhat less robust than the back- 
propagation network to S * Ip lesions, but, in general, direct pathway 
lesions affect the two networks similarly. Phonological clean-up lesions in 
the two networks result in similar behaviour as well, producing a sharp 
decline in correct performance with increasing lesion severity. 
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An interesting characteristic of the DBM is that it tends to settle into 
unit states that are very close to +1, even under damage. This’results in 
very clean phonological output when it responds. Considering the phono- 
logical output criterion, the worst phoneme has a probability above 0.8 for 
almost all correct and omission responses, whereas very few are above this 
level for the back-propagation network. In addition, only 9.2% of omis- 
sions fail because of the criterion of a minimum slot response probability 
of 0.6 for responses. The large majority (90.8%) of omissions fail the 
requirement that exactly one phoneme be active-no phoneme is active in 
87.2% of these.Thus, the phonological output criterion could be eliminated 
entirely without substantially altering the results with the DBM. 

Figure 15 presents the distribution of error types for each lesion location 
of the DBM, averaged over severities that resulted in correct performance 
between 1545%. Comparing with results for input lesions to the back- 
propagation network (shown in Fig. lo), the DBM is producing about 4-8 
times higher error rates. In fact, the distribution of error types is quite 
similar for the two networks. Both show a very high proportion of visual 
errors for lesions to input pathways. Furthermore, like the back-propaga- 
tion network, the DBM shows very low rates of blend responses. This is 
interesting because, unlike in the development of the back-propagation 
output network, no special effort was made to prevent blends in the design 
or training of the DBM. Their absence appears to be a natural and 
felicitous consequence of the nature of the attractors developed by the 
DBM. 

The error pattern for central lesions (S CF S and S units) is quite similar 
to the pattern for input lesions. Lesioning the semantic units produces a 
higher overall error rate (25.6%) than lesioning the connections among 
them (19.6%), but the largest increase is among other errors. Also, in the 
DBM these lesions do not produce the same strong bias towards semantic 
similarity in errors as they do in the back-propagation network. 

The pattern of error rates for output lesions to the DBM is quite 
different from that for the back-propagation network. The error rates for 
lesions to the direct pathway of the DBM (S ct Ip and Ip c+ P) are lower 
than for input lesions, and less biased towards visual errors. In addition, 
the DBM produces far fewer other errors than the back-propagation net- 
work. Perhaps more striking, phonological clean-up lesions in the DBM 
(P c+ P) still produce significant error rates, fairly evenly distributed across 
type, whereas the analogous lesions in the back-propagation network 
(P + Cp and Cp + P) produce virtually no error responses. With phono- 
logical clean-up damage, the DBM can use the bidirectional interactions 
with the intermediate units as a residual source of clean-up. This redund- 
ancy of clean-up is similar to that of the hybrid 4oj& network. 

All lesion locations in the DBM show a mixture of error types, and their 
ratios with the other error rates are higher than for randomly chosen error 
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responses. In addition, the rates of mixed visualand-semantic errors are 
higher for all lesion locations than expected from the independent rates of 
visual errors and semantic errors (although only slightly so for central 
lesions). Thus, the DBM replicates the main H&S results. 

The similarity of the results produced by input lesions to the DBM with 
those produced by the back-propagation network lends credence to the 
notion that the strength of the attractors for words is a much more 
important factor in determining the pattern of results than is the procedure 
by which those attractors are developed. However, the DBM develops 
strong attractors naturally, without the need for incremental training with 
noisy input. Furthermore, the interactive nature of processing in the DBM 
makes a large difference for lesions at the phonological level. Unlike the 
back-propagation output network, the DBM can fall back on bidirectional 
interactions with semantics (via the intermediate units) to provide clean-up 
that can partially compensate for lesions to intra-phoneme connections. 

In addition to these computational advantages of the DBM, there are 
some aspects of the reading behaviour of deep dyslexic patients that are 
much more effectively addressed using a network that settles gradually and 
has a well-defined measure of the goodness of representations. Two 
examples of this are the differences that some patients show in the relative 
confidence they have in some types of error responses, and the relative 
preservation of the ability to distinguish words from nonwords. 

Confidence in Visual vs. Semantic Errors 

Patterson (1978) found that deep dyslexic patients DE and PW were more 
confident that their visual error responses were correct compared with their 
semantic error responses. It is difficult to interpret these results because it 
is hard to know how to operationalise how “confident” the network is in 
a response. One possible interpretation is that a lack of confidence arises 
when the network takes a long time to settle, or settles into relatively poor 
representations. 

Figure 16 presents distributions of the number of iterations required to 
settle for correct responses, omissions, visual errors, and semantic errors 
produced by lesions to the DBM that resulted in correct performance 
between 1545%. Not surpxisingly, word presentations producing correct 
responses tend to settle most quickly. What is surprising is that the network 
takes longer on average to settle into an error response than an omission. 
However, remember that over 90% of omissions arise because no phoneme 
is active in some slot. Apparently the network is quick to turn off all the 
phoneme units in a slot if none of them receive sufficient support from the 
intermediate units as a result of damage. Accumulating enough support to 
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- correct 
.I. .I.. .. omissions 
-I--- visualenon --- semantic errors 

Retations to Seftle 
FIG. 16. Distributions of the number of iterations to settle for correct responses, omissions, 
visual errors, and semantic errors produced by the DBM under damage. 

activate a phoneme unit fully in each slot (and inhibit all others) often 
requires many more iterations (see Fig. 13). The two error types also show 
the most variability in settling time. Although there is a high degree of 
overlap between the two distributions, on average visual errors settle more 
quickly (mean 127.2 iterations) than do semantic errors (mean 139.4 iter- 
ations, q1, 44581 = 56.8, P < 0.001). Thus, increased settling time for 
semantic errors might account for patients’ reduced confidence that these 
error responses are correct. 

Another possible contribution to the confidence that patients have in 
their responses is the degree to which the system settles into “good” repres- 
entations, defined to be those with low energy. We compared visual and 
semantic errors in terms of their energy in different parts of the network. 
Considering the energy in the sets of connections between semantics and 
phonology (S ct Ip and Ip - P), visual errors have lower energy than 
semantic errors in the DBM (means -214.2 visual vs. -211.6 semantic, 
41,34561 = 25.0, P < 0.001). This was true after both input and output 
lesions. In contrast, for the sets of connections between orthography and 
semantics, there was no difference between the energy for visual vs. 
semantic errors (ql, 26471 = 1.4 ns). Thus, differences in energy can 
account for the increased confidence that some deep dyslexic patients have 
in visual compared with semantic errors only under the assumption that 
their judgement is based on the energy between semantics and phonology. 
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Lexical Decision 
Even when they are unable to read words, most deep dyslexic patients can 
often distinguish them from orthographically legal nonwords. Coltheart 
(198Oa) describes 9 of the 11 cases of deep dyslexia for whom there was 
data as being “surprisingly good” at lexical decision. For example, Pat- 
terson (1979) found that both DE and PW were nearly perfect at distin- 
guishing function words from nonwords that differed in a single letter (e.g. 
WITH, WETH), whereas explicit correct reading performance on the 
words was only 38% for DE and 8% for PW. In a more difficult test 
involving 150 abstract words, again paired with nonwords differing by a 
single letter (e.g. ORIGINATE, OFUGILATE), DE produced a d‘ score 
of 1.74; d‘ was 2.48 for PW. By comparison, d’ was 3.30 for normal 
age-matched controls. DE read only 19 of the 150 words correctly (12.7%), 
whereas PW read only 31 (20.7%). Thus, PW shows almost normal lexical 
decision performance with words he has difficulty reading; DEs perform- 
ance is significantly impaired but still much better than chance (d’ = 0). 

Hinton and Shallice (Note 41 attempted to model preserved lexical deci- 
sion under conditions of poor explicit reading performance in the following 
way. They constructed two sets of “nonword” stimuli with equivalent 
orthographic structure to the words (see Table 7). The nonwords in the 
close set were created by changing a single letter of one of the words; those 
in the distant set differed from every word by at least two letters. The two 
sets are matched in the frequency with which particular letters occur at 
particular positions, but not with respect to the word set. It is important 
to note that these stimuli are “nonwords” in the sense that they are 
unfamiliar to the network-it has not learned to associate them with any 
semantics. The fact that many of them are, in fact, English words (e.g. 
DONE) is irrelevant to the network’s behaviour. 

H&S modelled the task of lexical decision by changing the criteria used 
to generate responses. Specifically, a stimulus was accepted as a word if 
the proximity of the generated semantics to the nearest familiar semantics 
exceeded 0.7, ignoring the gap between this and other matches. The 
rationale for using a reduced proximity criterion and no gap criterion was 

TABLE 7 
The ”Nonwords” Used in the Lexical Decision Simulation 

Close DbttZW 

BUD GEG LIM PIP BERK GAG LUR PET 
BUT GIM MED POCK BIT GAP MOB PICK 
CAR HACK MUT RAB CICE HUB MOM REN 
DEN HARK NAT ROR DAP HUR NOD RUNK 
DONE LIB NUG TOP DIT LAD NOM TAG 
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444 PIAUT & SHALLICE 

that the semantic match required to indicate that the stimulus is a word 
needn't be as precise as the match required to specify a particular word 
for explicit naming. However, when this procedure was applied to the 
responses generated by the network after damage, there was little differ- 
ence between words and nonwords. For example, for a lesion of 
G + I(0.4). which produces 18% explicit correct performance, 67.3% of 
words were accepted, whereas 55.5% of close nonwords and 64.0% of 
distant nonwords were incorrectly accepted as words (d' = 0.31 and 0.09, 
respectively). For I + S(0.2) lesions (21.5% correct performance), 57% 
of words, 39% of close nonwords, and 45% of distant nonwords were 
accepted as words (d'= 0.46 and 0.30, respectively). Thus, H&S failed to 
demonstrate preserved lexical decision performance in their network when 
explicit correct performance is poor. 

In the context of modelling the nonsemantic route from orthography to 
phonology, Seidenberg and McCielland (1989) argue that, under some 
circumstances, normal subjects can perform lexical decision solely on the 
basis of orthographic or phonological familiarity. In their model, ortho- 
graphic familiarity is defined as the degree to which a letter string (word 
or nonword) can be re-created from the internal representation it gener- 
ates, measured in terms of an orthographic error score. Phonological famil- 
iarity as a basis for lexical decision is more problematic as it depends on 
the ability of the network to generate the correct pronunciations of both 
words and nonwords, which at least for nonwords is less than satisfactory 
(Besner, Twilley, McCann, & Seergobin, 1990). Nonetheless, Seidenberg 
and McClelland demonstrate that words tend to have lower orthographic 
error scores than do orthographically regular nonwords, and hence their 
undamaged model is capable of distinguishing most words from nonwords 
on the basis of orthographic familiarity (but see Fera & Besner, 1992). 

These results suggest that some measure of orthographic familiarity in 
the DBM network might provide a basis for lexical decision. The DBM 
network was given connections among grapheme units and trained to 
generate orthography from semantics so that it would learn the ortho- 
graphic structure among words in the same way that it learned semantic 
and phonological structure. However, if the network is to be required to 
actually recreate orthography, we cannot present input by clamping the 
grapheme units into their correct states as in previous simulations." 
Rather, we must provide the grapheme units with external input and 
require them to update their states in the same way as other units in the 
network. This is the same soft clumping technique that was used to train 
the phonological clean-up pathway of the back-propagation output net- 

"Seidmberg and McClelland (1989) avoid this issue by training their network to 
regenerate orthography over a group of orthographic units sejmrufe from the ones used to 
present input. 
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work. Specifically, we presented a letter string to tbe network by providing 
each grapheme unit with fixed external input sufficient to generate a state 
of 0.9 if its correct state was 1, or -0.9 if its correct state was -1. The 
initial states of grapheme units were set to 0.0 and updated over iterations 
just like the rest of the units in the network. The external input to grapheme 
units does not uniquely determine their final states because they also 
receive input from each other and from semantics via the intermediate 
units throughout the course of settling. 

We used as a measure of familiarity of a letter string the proximity 
between the correct states of the grapheme units and their final states after 
settling when presented with the letter string as external input. We will 
refer to this measure as orthographiclsemantic familiarity because it reflects 
the consistency of a letter string with both of these types of knowledge. 
The undamaged network produces an orthographidsemantic familiarity 
greater than 0.995 (maximum 2.0) for 35 of the words-it fails on CAN, 
MAT, DOG, HAM, and HOCK." By contrast, only 3 of the "nonwords," 
all in the close set, are considered this familiar: DONE, MED, and PIP. 
This performance yields a d' = 2.59 if this measure and criterion were 
adopted in a lexical decision task. 

If the network is damaged, the support that words receive from seman- 
tics is somewhat degraded and so we would expect the differences between 
words and nonwords to be reduced. However, the network remains able 
to distinguish fairly reliably nonwords from words it cannot read. 
Averaging across all lesion locations and severities producing correct 
performance between 15-85%, and including only word trials producing 
errors or omissions, an orthographidsemantic familiarity criterion of 0.995 
yields a d' = 2.08 overall (close: 1.66, &mt: 3.02). Lexical decision is 
much better for words producing omissions (d' = 2.49) than for those 
producing errors (d'= 1.31). Also, performance improves as lesions are 
located further from orthography (d' for input lesions: 1.36, central lesions: 
2.12, output lesions: 2.31). Thus, like most deep dyslexic patients, the 
damaged network is able to distinguish words from nonwords even when 
it cannot read the words. 

Summary 
The lesion experiments in this section attempt to serve three major pur- 
poses. The first is to demonstrate the generality of the HBrS results across 
networks developed with very different learning procedures. The second 
is to defend the use of back-propagation in cognitive modelling against 

''These misses reflect the fact that the network was not trained with soft damping--during 
training the grapheme units arc clamped to their c o r n  states through senling. Training the 
network with soft clamping would have eliminated these misses without substantially affecting 
the other cesults presented in this section. 
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criticisms based on its biological implausibility by providing evidence that 
the representations it develops have qualitatively similar proderties to 
those developed with a more plausible learning framework. The third is 
to illustrate how certain aspects of this alternative framework are particu- 
larly useful in understanding some additional characteristics of deep dys- 
lexia-specifically, greater confidence in visual errors, and preserved lex- 
ical decision with impaired naming. 

The primary focus of the simulations presented in the paper thus far 
has been on demonstrating and understanding the degree to which the 
replication of deep dyslexic reading behaviour in lesioned attractor net- 
works depends on various aspects of their design. However, in many ways 
the empirical limitations of the original H&S model are more severe than 
its computational ones. Only the most basic aspects of the syndrome were 
modelled: the co-occurrence of semantic, visual, and mixed visual-and- 
semantic errors. Our simulations have extended the range of empirical 
phenomena that have been addressed to include additional error types, 
confidence ratings, and lexical decision. However, there are fundamental 
characteristics of the patients’ reading behaviour, such as effects of word 
imageabilitykoncreteness and partsf-speech, that remain unaccounted 
for. The next section presents simulations that attempt to overcome these 
limitations and extend the empirical adequacy of attractor networks for 
modelling deep dyslexia. 

EXTENDING THE TASK DOMAIN: 
EFFECTS OF CONCRETENESS 

The final aspect of the H&S model that we investigate is the definition of 
the task of reading via meaning. Defining a task for a network involves 
choosing a set of input-utput pairs to be presented to the network, as 
well as specifying how these are represented as patterns of activity over 
groups of units. Formulating a reasonable task definition for the purposes 
of modelling human behaviour involves a trade-off between being as 
faithful as possible to what is known about the nature of representations 
from empirical work, while remaining within the often severe constraints 
imposed by the available computational resources. 

First and foremost, the task that the network performs must adequately 
approximate the task faced by subjects, or the network’s behaviour, how- 
ever interesting in its own right, wiU have little relevance to understanding 
human behaviour. However, exactly what constitutes “adequate” is very 
much a matter of debate. In essence, the decisions that are made in creating 
a simplified version of the task for the network constitute empirical claims 
about what aspects of the information available to subjects is crucial for 
understanding their behaviour. Although our empirid understanding of 
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the nature of how different types of information are represented provides 
useful constraints, it remains insufficiently detailed to specify the precise 
representations of each input-output pair as patterns of activity over 
groups of units. This is where computational considerations of what types 
of representation networks find easy or difficult to use come into play. 

The main computational limitations in specifying a task stem from the 
fact that the time to train a network increases with the size of the network 
and the number of examples it is trained on. Thus, there is strong pressure 
to use as few units as possible to represent the input and output, and to 
keep the size of the training set within reasonable limits. For tasks with 
considerable statistical structure among examples, such as mapping ortho- 
graphy to phonology, it may be necessary to use a large number of training 
cases in order to guarantee good performance on novel inputs. For tasks 
involving unrelated associations, such as mapping orthography to seman- 
tics, it may be sufficient to use a small number of examples. However, a 
drawback of using a small training set is that it becomes difficult to include 
all of the types of variation among examples that are empirically relevant. 
The fact that the H&S model was trained on only 40 words is a serious 
limitation, not so much because the nature of the mapping from ortho- 
graphy to semantics would be fundamentally different if more words were 
involved, but because only the most general semantic distinction, category 
membership, could be investigated. The influences of many other variables 
known to affect patients' reading behaviour were not examined. 

In particular, a distinction among words known to have a significant 
effect on reading in deep dyslexia is their imageability or concreteness. 
This issue could not be addressed using the original H&S word set because 
it contains only concrete nouns. The purpose of this section is to demon- 
strate that the approach taken by H&S can be extended to account for 
additional detailed characteristics of deep dyslexic reading behaviour, 
relating to the effects of the concreteness of stimuli and responses, and 
interactions with visual influences in e r r o d 5  

Effects of Concreteness in Deep Dyslexia 

The effect of the concreteness of the stimulus on deep dyslexic reading has 
been investigated in a number of ways. The most basic is its effect on the 
probability that a word wil l  be read correctly. Coltheart et al. (1987) claim 
that all patients who make semantic errors find concrete words easier to 
read than abstract ones. In many patients a very large difference is 
observed: 73% vs. 14% for KF (Shallice & Warrington, 1975), 67% vs. 
13% for PW and 70% vs. 10% for DE (Patterson & Marcel, 19n). 

"A condensed d d p t i o n  of the major results of thii section can k found in PIaut and 
shallicc (1991). 
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448 PLAUT&SHAUlCE 

A more subtle effect is the way that the concreteness of a word can 
affect the probability of the occurrence of visual errors. Shallice Qd War- 
rington (1975) noted in their patient KF that the responses tended to be 
more concrete than the stimuli when visual errors were made. This has 
since also been observed in patients BL (Nolan & Caramazza, 1982) and 
GR (Barry & Richardson, 1988); patient PS (Shallice & Coughlan, 1980) 
showed a strong trend (P < 0.06) in the same direction. The same effect 
is also apparent in the corpus of errors made by PW and DE (see Coltheart, 
Patterson, & Marshall, 1980, Appendix 2). The relative concreteness of 
the stimuli on which different types of responses occur has been investi- 
gated in three patients. In two, PD (Coltheart, 198Ob) and FM (Gordon 
et al., Note 3), visual errors occured on less concrete words than did 
semantic errors, whereas in GR (Barry & Richardson, 1988) there was no 
significant difference. Finally, in two patients, visual errors occurred 
significantly more often for stimuli less than a certain level of concreteness 
by comparison with more concrete stimuli (KF [Shallice & Wamngton, 
19801 C < 6 vs. C > 6; PS [Shallice & Coughlan, 19801 C < 4.6 vs. 
C > 4.6). Thus, a semantic variable-concreteneslearly influences the 
nature of visual errors. 

There is a single known exception to the advantage for concrete words 
shown by deep dyslexic patients: Patient CAV with concrete word dyslexia 
(Warrington, 1981). CAV failed to read concrete words like MILK and 
TREE but succeeded at highly abstract words such as APPLAUSE, EVID- 
ENCE, and INFERIOR. Overall, abstract words were more likely to be 
read correctly than concrete words (55% vs. 36%). In complementary 
fashion, 63% of his visual error responses were more abstract than the 
stimulus. However, the incidence of visual errors was approximately equal 
for words above and below the median in concreteness. Although CAV 
made no more semantic errors than might be expected by chance (see Ellis 
& Marshall, 1978), he appeared to be relying at least in part on the semantic 
route because his performance improved when given a word’s semantic 
category. CAV is clearly a very unusual patient, but any account of the 
relation between visual errors and concreteness can hardly ignore him. 

A Semantic Representation for Concrete and 
Abstract Words 

The type of semantic feature representation used by H&S is quite similar 
to that frequently employed in psychological theorising on semantic 
memory (e.g. Smith, Shoben, & Rips, 1974; Smith & Medin, 1981). More 
complex representations, such as frames (Minsky, 1975), can be imple- 
mented using this approach if units can represent a conjunction of a role 
and a property of its filler (Derthick, 1990; Hinton, 1981). More critically 
for the present purpose, there is a natural extension to the problem of the 
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effects of imageabilitykoncreteness. Jones (1985) has argued that words 
vary greatly in the ease with which predicates about them can be generated, 
and that this measure reflects a psychologically important property of 
semantic representation. For example, more predicates can be generated 
for basic-level words than for subordinate or superordinate words (Rosch, 
Mervis, Gray, Johnson, & Boyes-Braem, 1976). Jones showed that there 
is a very high correlation (0.88) between a measure of ease-of-predication 
and imageability, and that the relative difficulty of parts-of-speech in deep 
dyslexia maps perfectly onto their ordered mean ease-of-predication 
scores. He argued that the effects of both imageability and partsf-speech 
in deep dyslexia can be accounted for by assuming that the semantic route 
is sensitive to ease-of-predication. Within the present framework, the 
natural way to realise this distinction is by representing the semantics of 
concrete and abstract words in terms of differing numbers of features. 

A similar position is taken by Saffran (1980, p. 400): “While the core 
meaning of a reference term is relatively fixed (a rose i s  a rose), the 
meaning of an abstract word depends to a large extent on the linguistic 
context in which it is embedded (e.g. the phase of the moon, the phase of 
development, and so on). An isolated abstract word may not generate 
enough semantic information to specify an oral response.” A similar 
contrast appears to hold between nouns and verbs-another category deep 
dyslexic patients find difficult. Indeed, Gentner (1981) shows that verbs 
are broader in meaning, are more mutable under paraphrase, and vary 
more in retranslation through some other language. Presupposing that 
verbs and abstract nouns contrast with concrete nouns in a similar fashion, 
this would correspond to their having fewer features that are consistently 
accessed. If a connectionist learning procedure were applied in a network 
for generating phonological responses from such representations, it would 
come to rely on features that are consistently present. Therefore, on this 
approach, an appropriate first approximation to how the contrast between 
abstract and concrete words would be realised in a connectionist network 
is to use semantic representations that differ considerably in their number 
of features. 

To examine the effect of concreteness on visual errors, a set of 20 
abstract and 20 concrete words were chosen such that each pair of words 

TABLE a 
Twenty Concreteabstract Word Pairs Used in the Simulation 

TART TACT GRIN GAIN FLAN PLAN REED NEED 
TENT RENT LOCK LACK HIND HINT LOON LOAN 
FACE FACT ROPE ROLE WAVE WAGE CASE EASE 
DEER DEED HARE HIRE FLEA PLEA FLAG FLAW 
COAT COST LASS LOSS STAR STAY POST PAST 
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450 PLAUT & SHALLICE 

differed by a single letter (see Table 8). We repreented the semantics of 
each of these words in terms of 98 semantic features, listed in Table 9. 
The iirst 67 of these are based on the H&S semantic features for concrete 
words (e.g. main-shpe-3d, found-woods, Uving) with minor changes being 
made to accommodate the different range of meanings in this word set. 
The remaining 31 features (e.g. has-duration, relates-location, quality-difi- 
culty) are required to make distinctions among abstract words, but occa- 
sionally apply to concrete words as well. The ordering of the features and, 
in particular, the separation of concrete and abstract features, is irrelevant 
to the simulation. Figure 17 displays the assignment of semantic features 
to words. Concrete and abstract words differ systematically in their 

TABLE 9 
Semantic Features for the Concrete and Abstract Words 

1 max-size-less-foot 
2 max-size-foot-to-two-yards 
3 max-size-greater-two-yards 
4 main-shape-1D 
5 main-shape-2D 
6 main-shape-3D 
7 cross-section-rectangular 
8 cross-sectioncircular 
9 cross-section-other 

10 has-legs 
11 has-arms 
12 has-neck-or-collar 
13 white 
14 brown 
15 colour-other-strong 
16 varied-colours 
17 dark 
18 hard 
19 soft 
20 sweet 
21 moves 
22 indoors 
23 in-kitchen 
24 on-ground 
25 on-surface 
26 othenvise-supported 

28 in-country 
29 found-woods 
30 found-near- 
31 found-near-streams 
32 found-mountains 
33 found-on-farms 
34 found-in-public-buildings 

27 outdoors-incity 

35 found-in-transport 
36 found-in-factories 
37 surface-of-body 
38 above-waist 
39 natural 
40 mammal 
41 bird 
42 wild 

44 does-swim 
45 does-run 
46 living 
47 carnivore 
48 plant 
49 made-of-metal 
50 made-of-liquid 
51 made-of-other-nonliving 
52 got-from-plants 
53 got-from-animals 
54 pleasant 
55 unpleasant 
56 dangerous 
57 man-made 
58 container 
59 for-eating-drinking 
60 for-wearing 
61 for-other 
62 for-lunch-dinner 
63 particulariy-asoc-child 
64 particularly-assoc-adult 
65 used-for-games-or-recreation 
66 human 
67 female 

43 doeS-fly 

68 positive 
69 negative 
70 no-magnitude 
71 small 
72 large 
73 measurement 
74 superordinate 
75 true 
76 fiction 
77 information 
78 action 
79 state 
80 has-duration 
81 unchanging 
82 involves-change 
83 temporary 
84 time-before 
85 future-potential 
86 relates-event 
87 relates-location 
88 relates-money 
89 relates-pomssion 
90 relates-work 
91 relates-power 
92 relates-reciprocation 
93 relates-request 
94 relates-interprsonal 
95 qualitydifficulty 
96 qdity-organised 
97 quality-bravery 
98 quality-sensitivity 
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452 PLAUT & SHALLICE 

semantic representations: Concrete words have an average of 18.2 features 
whereas abstract words have an average of only 4.7 features. The similarity 
matrix among semantic representations, shown in Fig. 18, clearly illustrates 
that there is a range of similarities among concrete words and among 
abstract words, but very little similarity between these two groups of words. 
We do not claim that these representations adequately capture the richness 
and subtlety of the true meanings of any of these words. Rather, we claim 
that they capture important qualitative distinctions about the relationships 
between word meanings-namely, that similar words (e.g. LACK and 
LOSS) have similar representations, and that there is a systematic differ- 
ence between the semantics of concrete and abstract words that reflects 
their relative ease-of-predication. 

A network that maps from orthography to phonology via semantics was 
developed incrementally, as for the network described in the section on 
“Generating Phonological Responses.” An input network, analogous to 
the H&S model, was trained to map from orthography to semantics. A 
similarly structured output network was trained separately to map from 
semantics to phonology. These two networks were then combined into the 
complete network, shown in Fig. 19. 
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FIG. 18 The similarity matrix for the semantic representations of words. 
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I I  
10 dean-up units 68semanlicunb 

,n I 1  
10 dean-up units 

FIG. 19 The network for mapping orthography to phonology via semantics. The additional 
recurrent connections at the intermediate and dean-up layers in the output network were 
intended to facilitate the development of strong phonological attractors. 

Mapping Orthography to Semantics 

The task of the input network is to generate the semantics of each word 
from its orthography. Orthography is represented using the same %feature 
distributed code used previously (see Table 3). The architecture of the 
input network, shown in the bottom half of Fig. 19, is broadly similar to 
the H&S network except that it has (1) full rather than partial (25%) 
connectivity density, (2) fewer intemediate units (10 vs. 40) and clean-up 
units (10 vs. a), (3) no interconnections among semantic units, and (4) a 
feedback pathway from the semantic units to the intermediate units. In 
this sense it is something of a hybrid of the 10-15d and 4&Wj5 networks.I6 
The general motivation for these changes was to encourage the network 
to develop stronger semantic attractors while keeping the number of con- 
nections reasonable. 

The input network was trained with back-propagation to activate the 
appropriate semantic units for a word when presented with the word's 
orthography corrupted by independent gaussian noise with mean 0.0 and 
standard deviation 0.1. After 4700 sweeps through the training set, the 
state of each semantic unit was accurate to within 0.1 over the last 3 of 8 
iterations for each word. 

qualitatively similar results as the network described here. 
'*A second input network, with the same architecture as the 4049B network, produced 
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Mapping Semantics to Phonology 
The beginning of the section on “Generating Phonological Responses” 
discusses why it is important to develop an output network to replace the 
H&S response criteria. The central concern in that section was on demon- 
strating the validity of the criteria as approximations to the behaviour of 
an actual output network. An even more pressing issue for the present 
purposes is that the criteria are insensitive to the relative semantic and 
phonological discriminability of words. Given the design of the word set, 
a systematic difference in the phonological similarity of concrete vs. 
abstract words is highly unlikely, but a systematic bias in semantic similarity 
would be expected. Any differences found in performance between con- 
crete and abstract words might simply be due to an inherent bias of the 
response criteria applied to semantics. For this reason, it is important to 
use a phonological output network to generate responses rather than use 
proximity/gap criteria. We are then guaranteed that systematic differences 
observed under damage are due to properties of the network rather than 
to properties of an external procedure for interpreting the output. 

The word set requires a somewhat more complicated phonological 
representation than the one used for the H&S word set. Phonology is 
represented in terms of seven sets of position-specific, mutually exclusive 
phoneme units. These groups consist of three slots for phonemes from the 
initial (onset) consonant cluster, one slot for the vowel (nucleus), and three 
slots for phonemes from the final (coda) consonant cluster. The allowable 
phonemes for each slot, and the resulting phonological representation for 
each word, are given in Table 10. Each of the six consonant slots includes 
a unit for the null phoneme in order to represent explicitly the absence of 
any phoneme at that slot in the pronunciation of a word. As a result, the 
representation of every word has exactly one active unit in each slot. A 
total of 61 phoneme units are required to represent the pronunciations of 
all 40 words. As suggested earlier, there is no significant difference in the 
average pairwise proximity among the phonological representations of con- 
crete vs. abstract words (mean pairwise proximity: concrete 0.44, abstract 
0.42; 43781 = 1.41, P = 0.16). Thus, any systematic differences between 
concrete and abstract words are unlikely to result from phonological differ- 
ences between the word classes. 

The task of the output network is to generate the phonological repres- 
entation of each word from its semantic representation. The architecture 
of this network, shown in the top half of Fig. 19, was designed to facilitate 
the development of strong phonological attractors. Each major pathway 
shown has full connectivity density, and phoneme units in the same con- 
sonant or vowel cluster are fully interconnected. This connectivity allows 
units within a slot to develop a winner-take-all strategy while still co- 
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TABLE 10 
Phonological Representations of the Concrete and 

Abstract Words 

(a) Phonemm Allowed in Each Position 

POS. Phonemes 
~~~ ~~ ~~~~ ~~ 

1 s -  
2 
3 I r w y -  
4 
5 I m n s -  
6 
7 s t z -  

b ch d dy f g h k m n p sh t v z -  

a ai air ar aw e ee eer ew i ie ire o oa ow u uu 

b d  j f g  k p s h  t v z -  

(b) Assignment of Phonemes to Words 

TART I-t- ar 
TENT I-t- e 
FACE I-f- ai 
DEER rCd- eer 
COAT I-k- oa 
GRIN I-gr i 

ROPE I--r oa 
HARE I-h- air 
LASS /--I a 
FLAN I-fl a 
HIND /-h- ie 
WAVE I--w ai 
FLEA I-fl ee 

REED I--r ee 
LOON /--I ew 

FLAG I-fl a 

LOCK /--I o 

STAR 1st- x 

CASE I-k- ai 

POST I-p- 08 

- t 4  
n t 4  
s -4  
-‘-A 
- t 4  
n -4 
- k 4  
- P 4  
--4 
S -4 
n -4 
n d 4  
- v 4  
--4 
--4 
- d 4  
n -4 
S - 4  

s t 4  
-gA 

TACT 
RENT 
FACT 
DEED 
COST 
GAIN 
LACK 
ROLE 
HIRE 
LOSS 
PLAN 
HINT 
WAGE 
PLEA 
STAY 
NEED 
LOAN 
EASE 
FLAW 
PAST 

I-t- a 
I--r e 
I-f- a 
I -d-  ee 
I-k- 0 

I-g- ai 
1-1 a 
I--r oa 
C h -  ire 
/--I 0 

I-pl a 
I-h- i 
I--w ai 
I-pl ee 
/st- ai 
I-n- ee 
/--I oa 
I--- ee 
/-fl aw 
I-p- a 

-kt/ 
n t 4  
-kt/ 
- d 4  
5t4 

n -4 
- k 4  
1-4 
--4 
S -4 
n -4 
n t 4  
- j 4  
--4 
--4 
- d 4  
n -4 
2 - 4  
--4 
5t4 

The Ietter(s) used to represent phonemes are not from a standard 
phonemic alphabet but rather are intended to have more intuitive 
pronunciations. A “-” stands for the “null” phoneme. 

operating with units in other slots within the same cluster. Co-ordination 
and competition between clusters can only be accomplished via the clean- 

As with the output network for the H&S word set, the current output 
network was trained in a way that maximiss the strength of the attractors 
it develops, without regard for how well this approximates human speech 
development. Specifically, the direct pathway from semantics to phonology 

up units. 
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456 PLAUT & SHALUCE 

was trained to produce the correct phonemes of cach word during the last 
2 of 5 iterations when presented with its semantics corrupted by’gaussian 
noise with standard deviation 0.1. After about 30oO sweeps through the 
training set, the activity of each phoneme unit was accurate to within 0.2 
of its correct value for each word. At this point, intra-phoneme connections 
and the clean-up pathway were added and the amount of input noise was 
increased to 0.2. In this way the clean-up pathway learned to compensate 
for the limitations of the direct pathway when pressed by severely cor- 
rupted input.” The network was trained to produce the correct phonemes 
over the last 3 of 8 iterations to within 0.1 of their correct values. The 
amount of noise prevented the network from achieving this criterion con- 
sistently, and after 18,000 training sweeps performance had ceased to 
improve. However, the network easily satisfied the criterion for every word 
given uncorrupted input. 

The output network was then combined with the input network to pro- 
duce a network that maps from orthography to phonology via semantics. 
In order to ensure that the output network would operate appropriately 
with its input generated by the input network, the complete network was 
given additional training at generating the correct phonology of each word 
over the last 3 of 14 iterations when given the uncorrupted orthography 
of the word. The weights of the input network were not allowed to change 
during training to ensure that it continued to generate the correct semantics 
of each word. This final training required less than 100 sweeps through the 
words. 

The Effects of Lesions 

After training, the complete network successfully derives the semantics 
and phonology of each word when presented with its orthography. Each 
of the five main sets of connections in the input network was subjected to 
lesions of the standard range of severity. Fifty instances of each location 
and severity of lesion were camed out, and correct, omission, and error 
responses were accumulated using a phonological output criterion of 0.6. 
Table 11 lists the rates of correct performance for concrete and abstract 
words for each lesion location as a function of lesion severity. In the 
following analyses, we include data only from lesions producing overall 
correct performance between 15435% (listed in italic in the table). 

Overall, concrete words are read correctly more often than abstract 
words (mean difference in correct performance: 6.4%; fl1, 15491 = 6.28, 
P < 0.001). However, it is clear from the table that the pattern of results 

‘This procedure is slightty different from the one used to hain tbe phonological output 
networks for the original HBS stimuli, in which the direct and dean-up pathways were trained 
separately and then combined (see tbe section on “Generating Wonological Responses”). 
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TABLE 11  
Correct Performance for Concrete and Abstract Words for Each Lesion Location as a 

Function of Lesion Severity 

Lesion Severity 
Lesion Word 
Location Type 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.70 

concrete 88.6 75.0 67.1 52.7 44.2 38.3 23.0 16.7 7.4 
0 - 1  abstract 69.0 50.8 40.0 25.4 21.3 16.1 10.4 4.4 1.5 

difference 19.6 24.2 27.1 27.3 22.9 22.2 12.6 12.3 5.9 

concrete 75.1 54.8 38.2 28.2 19.9 14.1 6.3 4.2 0.9 
Ids abstract 53.9 26.6 16.4 10.0 6.1 3.0 1.2 0.8 0.0 

difference 21.2 28.2 21.8 18.2 13.8 11.1 5.1 3.4 0.9 

concrete 97.9 94.2 92.3 89.3 85.9 81.1 76.7 74.4 67.7 
s-r I abstract 96.2 93.0- 90.9 87.8 83.7 83.6 79.8 72.8 67.0 

difference 1.7 1.2 1.4 1.5 2.2 -2.5 -3.1 1.6 0.7 

concrete 94.6 91.2 83.6 78.9 71.4 65.8 57.2 43.5 28.4 
s-rc abstract 93.5 87.0' 84.1 78.8 71.2 69.2 61.8 56.4 42.7 

difference 1.1 4.2 -0.5 0.1 0.2 -3.4 -4.6 -12.9 -14.3 

concrete 88.7 79.4 67.2 59.4 45.0 42.3 30.8 18.8 12.2 
c+s abstract 83.1 74.0 65.0 54.6 48.6 42.3 33.3 27.2 21.6 

difference 5.6 5.4 2.2 4.8 -3.6 0.0 -2.5 -8.4 -9.4 

Data for lesions resulting in overall performance between 1545% correct are listed in italic. 

depends critically on lesion location. For lesions to the direct pathway 
(0 -D I and I + S), the advantage for concrete over abstract words is far 
more dramatic (mean difference: 22.3%; F[1, 5481 = 27.4, P < 0.001). 
Although this difference is not quite as large as is found with most deep 
dyslexic patients, it is nonetheless quite substantial. 

By contrast, lesions to the feedback connections (S 4 I) produce no 
significant differences in relative correct performance of concrete and 
abstract words (q1, 2491 < 1). This is also true of moderate lesions to the 
clean-up pathway (S + C and C -D S; F[1, 5491 < 1 for lesions of severity 
less than 0.5). However, severe clean-up lesions result in the reverse 
advantage-abstract words are responded to more accurately than concrete 
words (q1, 491 > 22, P < 0.001 for each of S + CrO.5, 0.71 and 
C -D S[0.5, 0.71). This type of lesion and pattern of performance are con- 
sistent with what is known about the concrete word dyslexic patient, CAV 
(Warrington, 1981). His reading disorder was quite severe initially, and he 
also showed an advantage for abstract words in picture-word matching with 
auditory presentation, suggesting modality-independent damage at the 
level of the semantic system. 
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As mentioned earlier, the error responses of deep dyslexic patients tend 
to be more concrete than the stimuli which prod& them. For the damaged 
network, we tested this by counting how often a stimulus and response 
were of the opposite type. Overall, abstract words are over twice as likely 
to produce a concrete response than vice versa (33.4% vs. 15.6% of total 
errors, F[1,2598] = 53.9, P < 0.001). Post hoc analyses for each lesion 
location and severity showed a similar pattern as for correct performance: 
A tendency for responses to be more concrete for all lesions within the 
direct pathway, but the opposite ‘tendency for severe lesions within the 
semantic clean-up pathway. 

Error responses were categorised in terms of their visual and semantic 
similarity to the stimulus. Words were considered visually similar if they 
overlapped in two or more letters-which corresponds to the standard 
neuropsychological criterioeand semantically similar if their semantic 
representations overlapped by at least 84% for concrete words and 95% 
for abstract words. The definition of semantic similarity is more compli- 
cated because of the systematic differences between concrete and abstract 
semantics and because the semantic representations are not organised into 
categories as in the H&S simulations. Note that two typical unrelated words 
have roughly 67% semantic overlap if both are concrete and 91% if both 
are abstract. Thus, the values of the semantic relatedness criteria for con- 
crete and abstract words are each approximately halfway between the 
corresponding expected value for unrelated word pairs of the same type 
and 100%. 

Figure 20 shows the rates of each error type produced by each lesion 
Icoation, for concrete and abstract words separately. Also included in the 
figure is the distributions of each error type for “chance” error responses 
chosen randomly from the word set in response to concrete or abstract 
stimuli. Notice that the criteria for visual and semantic relatedness are 
quite stringent-almost 85% of all possible stimulus-response pairs are 
unrelated. One consequence of this is that only 4 of the 190 pairs of abstract 
words are both visually and semantically related, and none of the concrete 
pairs are. Thus, by definition, concrete words cannot produce mixed visual- 
and-semantic errors. Nonetheless, when errors to concrete and abstract 
words are taken together, the ratios of the rates of each error type with 
that of other errors is at least 4 times the chance value for every lesion 
location. In fact, this also holds for each word type separately, except for 
visual errors to abstract words produced by clean-up lesions, where the 
ratios are only about twice the chance value, and for S + C lesions, which 
produced no semantic errors to abstract words. Also, the rates of mixed 
visual-and-semantic errors among the abstract words for all lesion locations 
are at least 3 times the rates expected from the independent rates of visual 
and semantic errors. Thus, the network replicates, on a different word set, 
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-.- 

conabs conabs conabs conabs con abs 
031 I*S s*c c=ss Chance 

m (4) m (8) 
FIG. 20 Overall rates of each error type for concrete (con) and abstract (ah) words for 
each lesion location (except S + I lesions, which produce virtually no explicit errors). 

the H&S finding of mixtures of error types for lesions throughout the 
network, including purely visual errors for lesions entirely within the 
semantic clean-up system. In addition, as with the networks trained on the 
original H&S word set, a number of the other errors are actually of the 
visual-then-semantic type found in deep dyslexia (e.g. PLAN + [flan] + 

A particularly intriguing aspect of the patient data is that abstract words 
are particularly likely to produce visual errors. The same is true of the 
network. A comparison of error types for concrete and abstract words 
revealed that the proportion of errors that are visual is higher for abstract 
words (41.4% vs. 36.4%, F[1, 10361 = 3.95, P c 0.05), whereas the pro- 
portion of errors that are semantic is higher for concrete words (32.3% vs. 
6.4%, F[1, 10361 = 155.1, P < 0.001). This effect is most clearly shown 
in Fig. 20 for lesions of the direct pathway. As a measure of the abstractness 
of the errors produced by a lesion, we used the number of errors to abstract 
words minus the number of errors to concrete words. Applying this 
measure to visual and semantic errors separately reveals that visual errors 

“tart”). 
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are more abstract than semantic errors (means 0.201 vs. -0.161 per lesion, 
F[1, 25981 = 85.0, p < 0.001). Finally, for each pair of visually similar 
words of contrasting types (e.g. TART and TACT), we compared how 
often each word produced the other as an error. Overall, abstract words 
are more likely to produce the paired visually similar concrete word as an 
error than vice versa (13.1% vs. 6.2% of total errors; Wilcoxon signed- 
ranks test n = 520,Z = 3.24, P < 0.001). Considering lesions to the direct 
and clean-up pathways separately, the effect is quite pronounced for the 
direct pathway (15.6% abstract vs. 3.9% concrete, n = 220, 2 = 6.16, 
P < 0.001) whereas lesions of the clean-up pathway produce the opposite 
effect (0.0% abstract vs. 23.8% concrete, n = 300, Z = 1.83, P < 0.05). 

Overall, the network successfully reproduces the behaviour of deep 
dyslexic patients after lesions to the direct pathway, showing better correct 
performance for concrete over abstract words, a tendency for error 
responses to be more concrete than their stimuli, and a higher proportion 
of visual errors in response to abstract compared with concrete words. By 
contrast, severe lesions to the clean-up pathway produce the reverse 
advantage for abstract words, similar to a patient with concrete word dys- 
lexia. 

Network Analysis 

The effects of concreteness on the performance of the network under 
damage can be understood in the following way. As abstract words have 
fewer semantic features, they are less effective than concrete words at 
engaging the semantic clean-up mechanism, and must rely more heavily 
on the direct pathway. Concrete words are read better under lesions to 
this pathway because of the stronger semantic clean-up they receive. In 
addition, abstract words are more likely to produce visual errors as the 
influence of visual similarity is strongest in the direct pathway. Slight or 
moderate damage to the clean-up pathway impairs what little support 
abstract words receive from this system, but also impairs concrete words, 
producing no relative difference. Under severe damage to this pathway, 
the processing of most concrete words is impaired but many abstract words 
can be read solely by the direct pathway, producing an advantage of 
abstract over concrete words in correct performance. 

In order to provide more direct evidence for this interpretation, we 
examined a number of aspects of the operation of the undamaged network. 
One measure that should be informative is the similarity of concrete and 
abstract word representations at different times and locations in the net- 
work with their final semantic representations. One hypothesis is that, if 
abstract words rely more heavily on the direct pathway and less on the 
clean-up pathway, their representations should be more semantically 
organised than those of concrete words prior to the influence of semantic 
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clean-up. However, this was found not to be the F: Concrete words are 
consistently more semantically organised than abstract words. 

Nonetheless, there is evidence that the clean-up pathway is particularly 
important in processing concrete words. Figure 21 presents the final clean- 
up representations of each word, with concrete words on the left and 
abstract words on the right. The representations for concrete words are 
far more binary than those for abstract words. When processing a concrete 
word, most clean-up units receive strong input (positive or negative) from 
semantics and are driven into states near 0 or 1. In contrast, clean-up units 
receive relatively weak input from semantics when processing an abstract 
word, and so tend to remain in states near 0.5. In this sense, the clean-up 
units play less of a role in generating the correct semantics of abstract 
words than they do for concrete words. 

Summary 
The range of empirical phenomena addressed by H&S was quite limited, 
in part because of limitations of the original model, but also because the 
restricted definition of the task o€ reading via meaning they used precluded 
consideration of many aspects of deep dyslexic reading behaviour. The 
simulations in this section serve to replicate the original findings of the 
cosccurrence of error types using a different word set, but more import- 
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antly, they extend the empirical adequacy of the.approach to include the 
effects of concreteness in deep dyslexia and its interactions with visual 
influences in errors. Our explanation for these effects hinges on the claim 
that far fewer features are activated consistently at the semantic level for 
abstract words than for concrete words. This difference causes the direct 
and clean-up pathways of the network to become differentially important 
in processing each type of word through the course of learning, and is thus 
reflected in the behaviour of the network under damage. The explanation 
has some similarities to those previously offered for the interaction 
between effects of concreteness and visual similarity (e.g. Morton & Pat- 
terson, 1980; Shallice & Warrington, 1980) but these were essentially ad 
hoc verbal extrapolations from cascade notions unrelated to other aspects 
of the syndrome, without even a principled account of the abstradconcrete 
difference. The present account is supported by a simulation, is linked to 
explanations of other aspects of the syndrome, and also offers the poss- 
ibility of addressing concrete word dyslexia. 

GENERAL DISCUSSION 
The appeal of connectionist modelling is greatest when the formalism 
significantly contributes to a natural explanation for empirical phenomena 
that are counterintuitive when viewed within other formalisms. This paper 
focusses on the symptom complex of deep dyslexia. Although the syn- 
drome can certainly be described in terms of impairments within traditional 
“box-and-arrow” information-processing models of reading (e.g. Morton 
& Patterson, 1980; Shallice & Warrington, 1980), such accounts offer little 
in the way of underlying principles that explain why such a diverse set of 
symptoms should co-occur in virtually all known patients who make 
semantic errors. Hinton and Shallice (1991) offer a connectionist account 
in which central aspects of deep dyslexia-the existence of semantic errors 
and their cosccurrence with visual and mixed visual-and-semantic errors- 
arise naturally as a result of damage to a network that builds attractors in 
mapping orthography to semantics. Although the approach has the 
advantage over traditional models of being far more computationally 
explicit, it has the limitation that there is little understanding of the under- 
lying principles of the model which give rise to its behaviour under damage. 
The current research involves a set of connectionist simulation experiments 
aimed both at developing our understanding of these principles and at 
extending the empirical adequacy of the approach on the basis of this 
understanding. The results demonstrate the usefulness of a connectionist 
approach to understanding deep dyslexia in particular, and the viability of 
connectionist neuropsychology in general. 

In this final section, we begin by discussing computational issues, focus- 
sing on the nature of the principles that underly the ability of networks to 
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reproduce the characteristics of deep dyslexia, and their degree of gener- 
ality. We then turn to empirical considerations, evaluating the degree to 
which these computational principles account for the full range of patient 
behaviour. The relationship between the current approach and other theor- 
etical accounts of deep dyslexia is considered next. We conclude by consid- 
ering more general issues regarding the impact of connectionist modelling 
in neuropsychology. 

Computational Generality 
Most connectionist efforts in modelling acquired dyslexia (e.g. Mozer & 
Behrmann, 1990; Patterson et al., 1990) have followed the standard 
approach in cognitive neuropsychology of using a particular model of 
normal reading to account for disorders of reading as a result of damage. 
In contrast, H&S never intended their model to be anything but the coars- 
est approximation to the mechhnism by which normal subjects derive the 
meanings of words. Rather, their network was intended to embody par- 
ticular computational principles, involving distributed representations and 
attractors, that were claimed to hnderly the effects seen in patients. In this 
way, the H&S model was put forth as representative of a wide class of 
models, all of which share the same basic principles but differ in other 
respects, and all of which, it was implicitly claimed, would show the char- 
acteristics of deep dyslexia under damage. However, H&S did not demon- 
strate that models lacking the properties they claimed were central would 
not show the characteristics of deep dyslexia, nor did they investigate the 
actual nature and scope of the class of models that would. The present 
research is aimed, in part, at clarifying exactly what aspects of the original 
model are responsible for its similarity under damage to deep dyslexic 
patients, and what aspects are less critical. To this end, simulations were 
canied out that explored the implications of each of the major design 
decisions that went into the H&S model: The definition of the task 
including the representation of the orthographic input and semantic output, 
the specification of network architecture, the use of a particular training 
procedure, and the means by which the performance of the network is 
evaluated. 

Critical System Properties 

The present simulations investigate systems with the following sets of 
properties: 

1. Orthographic and semantic representations are distributed over 
separate groups of units, such that similar patterns represent similar words 
in each domain, but similarity is unrelated between domains. 

2. Knowledge is encoded in connection weights that are learned by a 
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procedure for performing gradient descent in some measure of perfom- 
ance on the task of mapping orthography to semantics. 

3. Mapping orthography to semantics is accomplished through the oper- 
ation of attractors (and the lesion does not seriously impair the connections 
which implement the attractors). 

4. The semantic representations of concrete words are much “richer” 
than those of abstract words (i.e. contain considerably more consistently 
accessed features). 

The purpose of the simulations has been to assess the hypothesis that any 
system with these four properties will exhibit, when damaged, the following 
central characteristics of deep dyslexia: 

1. Semantic, visual, mixed visual-and-semantic, visual-then-semantic, 

2. Concrete words are read better than abstract words. 
3. Visual errors (a) tend to have responses that are more concrete than 

the stimuli, (b) occur more frequently on abstract than concrete words, 
and (c) have stimuli that are more abstract than do semantic errors. 

and other (unrelated) errors occur. 

It should be borne in mind that these characteristics have not been equally 
thoroughly investigated. Evidence for the generality of the types of system 
giving rise to the deep dyslexic symptom complex has been obtained only 
for the error pattern characteristic. Characteristics 2 and 3 have been 
examined only in one small group of systems, related to the IU-I5d and 
4O-Wj3 back-propagation networks. These latter characteristics are dis- 
cussed in the next subsection. 
As far as Characteristic 1 is concerned, the main empirical results of 

the simulation experiments are clear: The co-occurrence of semantic, vis- 
ual, and mixed visual-and-semantic errors after unitary lesions is not due 
to any idiosyncratic characteristics of the original H&S network. In addi- 
tion to holding for different lesion locations, as H&S found, it also holds 
for networks with different architectures, using different output systems, 
trained with different learning procedures, and performing different ver- 
sions of the task. Thus, in the section on “The Relevance of Network 
Architecture,” five alternative network architectures were examined in 
addition to the one H&S used. With minor exceptions of certain lesions 
to the clean-up pathways giving rise to very low error rates, all networks 
except one produce the error pattern of Characteristic 1, wherever they 
are lesioned. 

If one considers how the output produced by the system is assessed, the 
current simulations represent an advance, from a computational point of 
view, over related work in certain respects. The most important of these 
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is the development of networks that generate explicit phonological 
responses without the use of a best-match procedure. What is; however, 
critical for the present purposes is that the various input network architec- 
tures have each been implemented with two alternative output systems 
(although only one is described in this paper; see Plaut, Note 9, for addi- 
tional details). The networks exhibited qualitatively the same error pattern 
with both output systems, as well as when response criteria are applied to 
semantics. The simulations with the DBM network and with the abstract/ 
concrete word set also employed phonological output systems, and each 
produced a similar pattern of errors. 

All the simulations, with the exception of the replication of the H&S 
network, used a different fom of input representation from that used by 
H&S. The new representation, however, also obeys System Property 1, 
and did not affect the qualitative error pattern (Characteristic 1). The more 
general issue of distributed representations is discussed later. As far as the 
effects of different training procedures are concerned, in the section on 
“The Relevance of Training Procedure,” an algorithm was employed which 
differs from the iterative back-propagation procedure used by H&S, but 
which also obeys System Property 2. A qualitatively identical error pattern 
was still obtained wherever lesions were made. Finally, a completely 
different version of the task was examined in the section on “Extending 
the Task Domain,” again with no qualitative change in the error pattern. 

The fact that the co-occurrence of error types held under virtually all 
conditions examined does not enable us to isolate necessary as well as 
sufficient properties that must hold for systems to produce the deep dyslexic 
error pattern when damaged. Nonetheless, among the simulations that 
were run, there were some conditions under which the error pattern did 
not occur. These were of two types. First, very few explicit errors occur 
for lesions to the phonological clean-up pathway in the back-propagation 
output networks (see Fig. 10). When no output system was used, this was 
also true of lesions within the semantic clean-up system in some networks 
(e.g. the 4cMo network). These are cases in which the pathways respon- 
sible for implementing the attractors are themselves damaged. Second, and 
more directly, explicit errors are almost nonexistent after I + S lesions in 
the 40-80 network when using the response criteria. Here, the lesion is to 
a pathway in the processing system beyond the region where the attractors 
are formed. These results provide evidence that supports H&S’s claim-for 
which they presented no evidence-that the existence of attractors is essen- 
tial to produce the deep dyslexic error pattern. 

The importance of attractors, Property 3, can be seen in another way. 
The robustness of a network to damage of its direct pathway tends to be 
positively correlated with the rate of explicit error responses. This can be 
seen from a comparison of 0 + I lesion results across networks in Table 
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4, and also, although less clearly, in the I --+ S leion results. The same 
pattern also holds across the different output networks that were 
developed. These effects suggest that the processes responsible for main- 
taining correct performance after damage are also responsible for the pro- 
duction of errors-namely, the strength of attractors that have been 
formed. 

It would, however, be too strong a claim to make on the basis of the 
current simulations that Properties 1-4 are necessuv for a system to exhibit 
Characteristics 1-3 (Property 4, the relative richness of concrete semantic 
representations, is discussed later). However, the simulations provide 
strong evidence that systems obeying these properties exhibit the deep 
dyslexic error pattern under damage, and that variation in other aspects 
of their design do not fundamentally alter this pattern of breakdown. It 
seems plausible, therefore, that humans exhibit deep dyslexia after some 
types of brain damage because their cognitive systems also obey Properties 
1-4. 

Potential 1 imitations on Computational Generality 

One effect observed by H&S, which appears to be less general, is that 
of higher rates of mixed visual-and-semantic errors than predicted by the 
independent rates of visual errors and semantic errors. When the pressure 
to build strong attractors was increased by training with noisy input, this 
effect was observed only in networks in which the intermediate units 
between orthography and semantics were involved in developing attractors 
(i.e. the 40-80i, sofb, and 4&#0$5 networks). The mixed rate was not 
higher than predicted in networks in which the attractors operated sepa- 
rately from, and subsequently to, the direct access of semantics from ortho- 
graphy (i.e. the 4060 and 10-15d networks). To the degree that patients 
exhibit a sufficiently high rate of mixed visual-and-semantic errors, the 
results place constraints on the nature of network architectures that can 
account for these effects." The non-generality of this effect also emphasises 
the necessity of exploring a range of models that vary systematically from 
a particular model that shows some effect. It is difficult to determine which 
empirical results are robust and which are not on the basis of intuitions 
alone. 

A potential limitation of the original H&S work that has not been 
addressed in subsequent simulations is the possible effects of using such a 
small training set. Although we demonstrated that the basic effects hold 
for two separate word sets--the original set and the abstradconcrete set- 

'%e possible reason for questioning the findings in patients is that a high rate of mixed 
visual-and-scmantk errors might result from a post-lurical editing proocss that Occasionally 
blocks semantic errors with no phondogical or orthographic similarity to the input, as 
suggested by Levelt et al. (1991) for normal subjects. 
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both sets contain only 40 words. The question a r k s  as to whether the 
results are strongly biased by this limitation. In fact, Seidenberg and 
McClelland (1990) have argued that many of the limitations of their model 
are due to the fact that it was only trained on about 2900 words. However, 
there are significant differences between the tasks that the two models 
perform that provide reasonable justification for the reliability of effects 
produced in the current networks with only 40 words. Mapping directly 
from orthography to phonology involves learning statistical relationships 
among mappings that can then be applied to novel inputs in reasonable 
ways. Thus, a large number of training cases are required to estimate these 
statistics reliably, and performance would be expected to improve with a 
larger training set. In contrast, mapping from orthography to semantics 
involves overcoming statistical regularities, since visual similarity is not 
predictive of semantic similarity. It is true that a small training set limits 
the range of similarity that can be expressed within orthography or seman- 
tics, but it is unlikely to alter the nature of the mapping between them 
fundamentally. Thus, the small size of the word sets prevented us from 
investigating the effects of variables such as frequency and syntactic class 
that are known to infiuence deep dyslexic reading significantly, and these 
issues remain open for future research. However, the basic findings of the 
co-occurrence of error types would still hold if a much larger set of words 
were used. 

Empirical Adequacy 

Quantitative Adequacy 

The pattern of errors found when the models described in this paper 
are lesioned fits qualitatively with that observed in deep dyslexia. However, 
the quantitative fit seems less adequate. If one examines what proportion 
of all non-correct trials give rise to an explicit error response, then for 7 
deep dyslexic patients reviewed by Shallice and Warrington (1980) the 
value is between 25% and 95% (median 59%). By contrast, for the 19 
lesion types shown in Table 4, for only 1 is the value over 30% (0 + I 
lesions in the 1&15d network), and for only 3 others is it over 10%. Table 
4 reports results based on the use of response criteria applied to semantics 
in lesioned back-propagation networks. The use of a phonological output 
network leads to higher values (see Figs. 10 and 20), as does the use of 
the DBM network (see Fig. 15). However, in general, lesions to the net- 
works result in values below, rather than above, 50%. 

It would be incorrect, though, to take this quantitative discrepancy 
between patients and models as strong evidence against the models. For 
the models, factors that are not central to the theory, such as the way 
responses are determined, greatly affect absolute error rates. Moreover, 
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many parameters are set for computational convenience, such as the 
number of intermediate units; or are clearly not realistic, like the tlumber 
of semantic and visual competitors of a typical word. Variations in such 
parameters are also likely to affect absolute error rates, although it is the 
theoretical claim of this paper that such variations would not lead to qual- 
itative changes in the error pattern. 

One property of the deep dyslexic error pattern is that some patients 
make far more semantic errors than visual errors, whereas other patients 
show the opposite tendency. Thus, Patterson's (1978) patient, PW, pro- 
duced about 4 times as many semantic errors as visual, whereas KF  (Shal- 
lice & Warrington, 1975) produced 15 times as many visual errors. Can 
this quantitative difference be explained in terms of a contrast in the effects 
of lesioning at different places in the same network? The more detailed 
quantitative aspects of the error pattern in the present simulations confirm 
H&S's finding that large variations in the ratio of visual errors to semantic 
errors do occur with different lesion locations in the same network. This 
ratio differs across lesion sites by a factor between 3 and 10 for each of 
the back-propagation networks (comparing the 0 + I ratio with the I + S 
ratio, see Table 5). When an output system is added, similar but slightly 
smaller values are obtained if input lesions are contrasted with output 
lesions (see Fig. 10 for the extended 4060 network, and Fig. 15 for the 
DBM). Thus, although the networks do not produce quite such extreme 
contrasts as selected patients do, the effects obtained with the networks 
are generally in line with those shown by patients. 

Inspection of Table 5 suggests that errors with a visual component (i.e. 
visual and mixed visual-and-semantic errors) will always exceed semantic 
errors, which is not the case in some patients (e.g. PW, Patterson, 1978; 
GR, Marshall & Newcombe, 1%). However, this effect arises from the 
particular criteria used to classify all possible errors as visually related (30% 
by chance) and as semantically related (12% by chance). If the criteria are 
adjusted so that the chance rates of the two error types are equalised to 
approximately lO%-mmewhat more in line with criteria used empiri- 
cally-then semantic errors can outnumber visually similar errors. For 
example, in the 4060 network, semantic errors are 20% more frequent 
than visual and mixed visual-and-semantic errors combined after I + S 
lesions, but 30% less frequent after 0 + I le~ions.'~ Overall, the quantita- 
tive variation in rates of different error types that occur across patients 
seem broadly compatible with the behaviour of the networks. 

'With the adjusted criteria, semantic errors can atso outnumber visually similar errors in 
the IO-ISd, 4&@fb, and HBS replication networks, but the rates of mixed visual-and- 
semantic errors remain high in the 4 M O i  and sryb networks. This provides further evidence 
that the relative rates of mixed visual-and-semantic errors are sensitive to architectural details. 
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Extensions to Further Aspects of Syndrome 

The simulations reported in this paper have two main goals.’The first 
is to show the computational robustness of the Occurrence of the basic 
deep dyslexia error pattern when models satisfying the four assumptions 
listed earlier are lesioned. The second goal is to show that other aspects 
of the deep dyslexia symptom complex arise when individual models of 
this sort are explored in more detail. This part of the work is more 
exploratory and less rigorous, as we have investigated the individual 
models that are technically easiest to examine with respect to a particular 
issue, rather than the full gamut of models used in the work on the basic 
error pattern. In all cases, though, investigations of other models not 
reported here produced the same pattern of results. This section, therefore, 
may be viewed as an exploration of what characteristics other than the 
basic error pattern would be observed when a network satisfying the four 
assumptions is lesioned. 

Three issues were specifically addressed: the effects of concreteness, 
how confidence relates to error type, and lexical decision. Information 
relevant to a fourth issue, visua-then-semantic errors, came to light in the 
course of the study. A fifth issue, the different subvarieties of deep dys- 
lexia, was indirectly confronted when the problem of generating phono- 
logical output was tackled. 

Effects of Concreteness. In the simulation described in the section on 
“Extending the Task Domain,” an additional assumption was made, fol- 
lowing Jones (1985), Saffran et al. (1980), and Gentner (1981), that, com- 
pared with other types of words, concrete nouns have a “richer” semantic 
representation that is consistently accessed. Specifically, the number of 
dimensions on which the semantic representation of a word has a specific 
value independent of the values it has on other dimensions, and across 
different contexts, is assumed to be greater for concrete nouns than for 
other words. This corresponds in our model to concrete nouns having more 
semantic features than do abstract nouns. When this assumption is made, 
lesions to the direct pathway of the input network lead to an advantage in 
correct performance for concrete over abstract words. In further experi- 
ments not reported in this paper, lesions to the output network also 
resulted in better correct performance on concrete vs. abstract words, 
although the difference was not as large as for input lesions. It appears 
that the greater number of active semantic features gives the clean-up 
circuit more raw material on which to work, allowing stronger attractors 
to be built. This fits with Funnell and Allport’s (1987, p. 396) suggestion 
that “certain classes of words evoke cognitive representations that are 
themselves relatively autonomous (strongly auto-associated) and therefore 
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form relatively stable cognitive structures.” The magnitude of the effect 
in the network is not quite as large as that shown in some deep dyslexic 
patients, but a quantitative difference of this sort is not unexpected given 
the great difference in scale between the model and the human cognitive 
system. More surprising than the mere existence of an abstradconcrete 
effect is the fact that it interacts with the Occurrence of visual errors in a 
similar way to that found in most deep dyslexic patients in whom it has 
been investigated. After lesions to the direct route in the network, visual 
errors on average occur on more abstract words than do semantic errors, 
and the responses of visual errors tend to be more concrete than the 
stimuli.m 

Better performance in reading concrete than abstract words is not found 
in all acquired dyslexic patients. Warrington (1981) reported a patient, 
CAV, who read abstract words significantly better than concrete words, 
although the difference (55% vs. 36%) was not as dramatic as the com- 
plementary contrast found in certain deep dyslexic patients. The apparent 
double dissociation of concrete vs. abstract word reading between CAV 
and deep dyslexic patients is difficult to account for without resorting to 
the rather extreme position that the semantics for concrete and abstract 
words are neuroanatornicdly separate (Shallice & Warrington, 1980; War- 
rington, 1981). The simulation provides an alternative explanation. Severe 
lesions to the clean-up pathway lead to an abstract word superiority that 
is, however, smaller than the concrete word advantage obtained from 
lesions to the direct pathway. 

The difference between the two types of explanation is subtle but 
important. Since in our simulations we allow damage to impair the direct 
and clean-up pathways independently, we are assuming implicitly that 
these pathways are neuroanatomically separate. However, it is not the case 
that the direct pathway processes abstract semantics while the clean-up 
pathway processes concrete semantics. The entire network is involved in 
generating the semantics of both concrete and abstract words. Rather, the 
direct and clean-up pathways serve different computational roles in this 
process, and these roles are differentially important for reading these two 
classes of words. As in the account given by Shallice and Wamngton, the 
dissociations arise from the selective impairment of a speciaiised process, 
but the specialisation is not in terms of the surface distinction (i.e. concrete 

mThe one patient who differed in this respect was GR (Barry & Richardson, 1988). Like 
the simulation, GR produced visual errors much more frequently on abstract words, but for 
GR the stimuli producing visual errors and semantic errors were roughly equally concrete. 
However, GR made semantic errors in matching spoken as well as written words to pictures 
(Newcombe & Marshall, 198Oa). His impairment would therefore seem to involve the 
semantic system itself, which, when lesioned, would be expected to give rise to a higher 
number of semantic errors, even for concrete words, as was true of the extended 4060 
network (see Fig. 10). 
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vs. abstract words) but rather in terms of underlying representational and 
computational principles (e.g. the influence of differing numbers of 
semantic features on the development of attractors). 

The fact that the model is consistent both with patients showing a con- 
crete word advantage and with patients showing an abstract word 
advantage may suggest to some readers that the model is underconstrained 
by the data. There are three possible replies. F i t ,  overall, both patients 
and the model show a concrete word superiority. Second, for both types 
of superiority, the model predicts that visual error responses wil l  tend to 
come from the class of words that are read more accurately. As predicted, 
CAVs visual error responses were more abstract than the stimuli (War- 
rington, 1981). Finally, the model predicts that the complementary patterns 
would differ on other characteristics, corresponding to the different effects 
of direct vs. clean-up pathway lesions. CAV also showed an advantage in 
matching auditorily presented words with pictures, suggesting modality- 
independent damage at the level of the semantic system. Thus, there are 
additional aspects of our simulation that counter the challenge that it is 
underconstrained. However, given the uniqueness of concrete word dys- 
lexia in CAV, its occurrence in the model should be considered suggestive 
rather than conclusive.*’ 

Confidence Judgments. We examined the relative confidence with 
which visual errors and semantic errors are produced in the DBM network. 
Two analogues for confidence were developed: The speed of settling, mea- 
sured in terms of the number of iterations, and the “goodness” of the 
resulting representation, measured in terms of the energy in different parts 
of the network. Using both measures, visual errors were produced with 
more confidence than semantic errors, as has been observed in three deep 
dyslexic patients by Patterson (1978) and Kapur and Per1 (1978), although 
the differences observed in the network were small.p 

Coltheart (198Oa), in his review, rates lexical deci- 
sion as being “surprisingly good” in nine patients, but most of the evidence 
is based on personal communication. The published results that are cited 
pertain only to two of the patients (DE, PW; Patterson, 1979). Lexical 
decision was not rated “surprisingly good” in three patients; JR (Saffran, 

Lexical Decision. 

*‘CAV does differ from the prcdidiow of the rnodcl in making virtually no semantic 
errors. However. his nonword reading was not totally eliminated, as on one occasion he read 
20% of OODSCDSC syllables (Warrington, 1981). Thus, it remains possible that semantic errors 
could be edited out by his partiaUy preserved phonological mute, in an analogous fashion to 
the Suggestions made by Newcornbe and Manhall (198Ob) for phological alcxia. However, 
until a patient is reported who is otherwise similar to CAV but who makes semantic errors. 
this rugeestiOn remains ad hoc. 

nA somewhat different pattern of findings 011 GR (Newcornbe & Manhall. 198Oa) is not 
based w an adequate lllllouIlt of data. 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
T
o
r
o
n
t
o
]
 
A
t
:
 
1
9
:
4
9
 
1
6
 
F
e
b
r
u
a
r
y
 
2
0
1
0



472 PIAUT 81 SHALUCE 

personal communication), PS (Shallice & Coughlp, 1980), and AR (War- 
rington & Shallice, 1979).= Moreover, our attempts to demonstrate pre- 
served lexical decision performance in a lesioned network have also been 
somewhat indeterminate. In an early investigation, Hinton and Shallice 
(Note 4) defined a yes response in lexical decision in the network by using 
a lower value of the proximity criterion than required for explicit naming 
(0.7, down from 0.8) and no gap criterion. This procedure did not result 
in relatively preserved lexical decision for words that could not be read. 
However, this effect was obtained in the present investigation when a 
procedure similar to that employed by Seidenberg and McClelland (1989) 
was used with the DBM network. According to this procedure, letter 
strings are given a yes response in lexical decision when they can be “re- 
created” on the basis of orthographic and semantic knowledge. For words 
that could not be read, this yielded a d’ value (2.08) of the same sort of 
range as that found in DE (1.74; Patterson, 1979). Although these more 
recent results are promising, it should be kept in mind that aspects of the 
simulations-in particular, the definition of the task of lexical decision-are 
too unconstrained for the simulations to constitute a completely adequate 
characterisation of preserved lexical decision in deep dyslexic patients. 

A phenomenon that was not specifically 
investigated is the occurrence of visual-then-semantic errors in deep dys- 
lexia (e.g. SYMPATHY -+ “orchestra,” presumably mediated by sym- 
phony; Marshall & Newcombe, 1966). These are generally thought of as 
a visual error followed by a semantic error (Coltheart, 1980a), which pre- 
sumably implies that two different impairments are involved. The present 
simulations provide a more parsimonious explanation, as the errors can 
arise when only a single set of connections is lesioned. They were observed 
unexpectedly using both the original H&S word set and the abstractlcon- 
Crete word set. The mechanism by which they arise is most clearly seen in 
the case where the network includes an output system. A lesion to the 
input system can produce a semantic representation very close to that of 
a word visually related to the stimulus. However, the attractors in the 
output system may map this slightly inaccurate semantic activity onto the 
phonology of a semantic neighbour of this visually related word rather than 
the phonology of the word itself. It is the n o m l  operation of the output 
system that produces the semantic part of the visual-then-semantic error. 

Visual-then-semantic Errors. 

Subvarieties of Deep Dyslexia. The final empirical issue addressed by 
the present investigation of deep dyslexia is that it can arise in a number 
of forms. Some patients, such as PS (Shallice & Coughlan, 1980) and KF 
(Shallice & Warrington, 1980), are much better at comprehending spoken 

AR differs from prototypical deep dyslexic patients in a number of wars (see Coltheart. 23 

198Oa). Also, his lexical decision was assessed in an unusual fashion. 
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than written words, suggesting an early locus of impairment, between 
orthography and semantics. Other patients, such as GR (Newmmbe & 
Marshall, 1980a; 1980b) and FD (Friedman & Perlman, 1982), show similar 
types of errors across a number of lexical tasks involving variations in the 
modality of both the stimulus and the response, suggesting an impairment 
within lexical semantics itself. Still other patients, such as PW (Patterson, 
1978; 1979), show relatively intact comprehension of Visually presented 
words, even those they cannot read aloud, suggesting an impairment 
between semantics and phonology (or within phonology itself). The same 
divisions can be made on the basis of the relative proportions of Visual and 
semantic errors. As mentioned earlier, some patients make far more visual 
than semantic errors; the ratio of visual errors to semantic errors was 
around 2.5 for VS (Saffran & Marin, 1977), 5 for PS, and approached 14 
for KF. The two types of errors are approximately equal for other patients 
(e.g. PD, Kapur & Perl, 1978). Still others make far more semantic errors 
than visual errors-about 2.5 times more for GR (Barry & Richardson, 
1988; Marshall & Newcombe, 1966) and 4 times more for PW. Finally, 
lexical decision performance, to the limited extent it has been investigated 
in deep dyslexic patients, varies in the same way as comprehension and 
error proportion data (Barry & Richardson, 1988; Shallice & Warrington, 
1980). Taken together, these distinctions have led researchers to suggest 
that deep dyslexic patients can be further classified as input, central, or 
output, based on whether their impairment is located prior to, within, or 
after semantics (Friedman & Perlman, 1982; Shallice, 1988a; Shallice & 
Warrington, 1980). 

Our simulations show similar variation in comprehension, relative error 
rates, and lexical decision, as a function of lesion location. Let us consider 
a misread word to be comprehended correctly when its semantics match 
those generated by the network better than any other word. Among words 
that are misread by the extended 40-60 network (both errors and omis- 
sions), only 46.1% are comprehended after input lesions (0 --., I and 
I --* S), whereas 81.2% are comprehended after central lesions (S + C, 
C + S, and the S units themselves). By contrast, since output lesions to 
the back-propagation networks leave the semantics they derive unaffected, 
they would show 100% comprehension of words they could not read. The 
DBM network shows a similar distinction in comprehension performance, 
although there is some impairment after output lesions because processing 
is far more interactive than in the back-propagation networks. Specifically, 
only 14.6% of incorrectly read words are comprehended after input lesions, 
and 25.7% after central lesions, but 62.1% are comprehended after output 
lesions. Furthermore, as described earlier, these networks show changes 
in the ratio of visual errors to semantic errors as a function of lesion location 
analogous to thm shown across patients (see Table 5 for the back- 
propagation networks, and Fig. 15 for the DBM network). Finally, lexical 
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474 PIAUT & SHALLICE 

decision in the DBM is better after output lesions (d‘= 2.31) than after 
input lesions (d’= 1.80). Thus, the simulations can account for the vari- 
ation across the different subtypes of deep dyslexia. 

More fundamentally, what has, in the past, been left totally unexplained 
by the division of deep dyslexic patients into subtypes is their similarity: 
Why should such widely varying impairments give rise to qualitatively 
equivalent error patterns and word-class effects in oral reading? The cur- 
rent simulations provide a simple explanation. Networks that map among 
distributed representations of orthographic, semantic, and phonological 
information using attractors are naturally sensitive to the similarities within 
these domains, and hence these similarities influence the errors that occur 
under damage. Indeed, qualitatively equivalent error patterns arise in the 
simulations from lesions to any stage along the semantic route, from the 
first set of connections after the orthographic input units to the last set 
before the phonological output units (see Figs. 10 and 15). 

Remaining Empirical Issues 

No evidence was obtained relating to certain aspects of the deep dyslexia 
symptomtomplex. Some of these-derivational errors, and part-of-speech 
effects-can be accounted for by natural extrapolations from the current 
results. The situation is less clear for others: associative semantic errors, 
patients who make no visual errors, and the relation to impairments in 
writing (deep agraphia). We consider each of these in turn. 

Derivational Errors. Deep dyslexic patients often make derivational 
errors, giving a response that is a different inflectional or derivational form 
of the stimulus (e.g. HITTING --.) “hit”). Since the word sets and ortho- 
graphic representations we have used do not involve inflections, we could 
not have reproduced this type of error directly in our simulations. How- 
ever, derivational errors can be considered to be one variety of mixed 
visual-and-semantic error, as they almost always have both a visual and a 
semantic relation to the stimulus. Therefore, abovethance rates of such 
errors are to be expected given the rates of mixed errors produced in the 
simulations. This is not to deny that the representations of inflectional or 
derivational forms of a word are related in a special way-unlike other 
visually or semantically related sets of words (Patterson, 1978; 198O)-only 
to point out that the Occurrence of derivational errors in deep dyslexia can 
be explained without such an assumption (also see Funnell, 1987). 

In general, deep dyslexic patients read nouns 
better than adjectives, adjectives better than verbs, and verbs better than 
function words. Both the H&S word set and the abstradconcrete word 
set contain only nouns. However, Jones (1985) showed that ordering words 
in terms of ease-of-predication results in the same overall rank ordering 

Part-of-speech Effects. 
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of syntactic classes. In addition, Barry and Richardson (1988) found that 
part-of-speech had no effect on the reading pehormance of GR when 
concreteness, frequency, and “associative difficulty” (closely related to 
ease-of-predication) were statistically controlled. In the abstradconcrete 
simulations, we reflected the ease-of-predication of a word in terms of the 
number of active features in its semantic representation, and found that, 
after damage, concrete words, with greater ease-of-predication, are read 
better than abstract words. It would seem appropriate to give different 
parts-of-speech semantic representations in which the average number of 
features varied in a similar fashion. By analogy with the effects found with 
the abstradconcrete word set, one would expect that damage to the main 
part of the network would result in the same rank order of correct perform- 
ance, with nouns > adjectives > verbs > function words. Thus, the 
approach taken in the simulations seems likely to produce the part-of- 
speech effects found in deep dyslexia (also see Marin, Saffran, & Schwartz, 
1976). 

Coltheart (198Od) argued that two types 
of semantic errors occur in dGep dyslexia: a shared-featwe type, and an 
ussociutive type. In the present simulations, only the shared-feature type 
was formally investigated. Comparing Tables 6.1 and 6.2 of Coltheart 
(198Od, pp. 147-148; also see the error corpora in Coltheart et al., 1980, 
Appendix 2), this type appears to be the larger group, and over half of 
those held to be associative by Coltheart appear to have visual (V) or 
shared-feature (Sn characteristics as well.u In some errors, however, the 
associative aspect completely dominates (e.g. FREE -+ “enterprise,” 
STAGE + “coach”). Could a network produce such errors? 

Notice that words with an associative relationship often follow one 
another in spoken and written language (see Deese, 1965). In the course 
of normal fluent reading, the system must move quickly from the represen- 
tation of one word to the next. Suppose that the system must start from 
the attractor of the current word, or at least is biased towards it, when 
beginning to process the next word. For word pairs that frequently follow 
each other (e.g. WRIST WATCH), the network will learn to lower the 
energy boundary between the attractor basins for the two words so that 
the transition can be accomplished more easily.= This lower boundary 
would be more easily corrupted or lost under damage than would the 

Associative Semantic Errors. 

uANTIQUE -+ “Vase” (SF). NEXT -+ “exit” 0, PALE -D “ale” (V), COMFORT + 
“blanket” (SF). IDEAL. + “milk” (SF), THERMOS 4 ‘%SIC” (SF), INCOME -D ‘’tax’’ 
(SF), MOTOR -+ “car” (SF), BRING + “towards” (SF), POSTAGE + “stamps” (SF). 
WEAR -D ‘‘dothes” (SF), STY -+ ‘pig”, BLOWING + “wind” (SF), SHINING -D “sun” 
(SF). CONE + “iacnam” (SF). 
% explanation does not imply that sequemrs of interpretations are Eowd by 

temporarily adjusting the energy boundaries between them, but only that an of learning 
sequencc~ would be to lower the boundaries between fmquent transitions. 
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boundaries between basins for other word pairs. & a result, presentation 
of the first word would become more likely to settle into the attractor for 
the second word, resulting in an assOciative semantic error. This explana- 
tion also predicts that the reverse ordering should also become more likely 
as an error, which is found in patients (e.g. DIAL-, “sun” and 
CONE + “ice-cream;” Coltheart, 1980d).% Of course, these errors would 
become even more likely if the two words shared any visual or semantic 
features. 

Patients Who Make no Visual Errors. A major contribution of the 
current connectionist approach to deep dyslexia is the ubiquitous co- 
occurrence of visual, semantic, and mixed visual-and-semantic errors when 
an attractor network that maps orthography to semantics is lesioned. Thus, 
possibly the strongest empirical challenge to the current account is the 
existence of three patients who make semantic and derivational errors in 
reading, but no purely visual errors (KE, Hillis et al., 1990; RGB and HW, 
Caramazza & Hillis, 1990). KE made semantic errors in all other lexical 
processing tasks as well (e.g. writing to dictation, spoken and written 
picture-word matching), suggesting damage within the semantic system. 
In contrast, RGB and H W  made semantic errors only in tasks requiring a 
spoken response, suggesting damage in the output system after semantics. 
Although a number of the network architectures we examined produced 
no visual errors with some types of clean-up damage when the response 
criteria were used (e.g. 4&60 C + S lesions; 8ofb S + I lesions), when 
an output system was used, all of the networks produced visudphono- 
logical errors for every lesion location other than the phonological clean-up 
pathway. The primary motivation for developing an output system was to 
obtain an unbiased procedure for generating explicit responses from 
semantic activity, rather than to model the human speech production 
system per se. In fact, there are many ways in which it is clearly inadequate 
for the latter purpose (cf. Dell, 1986; 1988; Levelt, 1989). However, we 
have considered the pattern of errors produced by lesioning the output 
network as helping to explain the existence of an output form of deep 
dyslexia. Therefore, we can hardly argue that the deficits of RGB and HW, 
much less KE, are outside the scope of the model. 
As far as patient KE is concerned, the initial report on word reading 

refers to most errors being semantic, but remaining errors include 
phonologically and/or visually related ones. Such errors only amounted to 
1.4% of all noncorrect responses in the main experiments reported. How- 
ever, these experiments involved the presentation of a considerable 
number of items (e.g. 14) from each of a number of categories (4 or lo), 

%tb directions of an associative error need not be q u d y  likely after damage, because 
there can be differences in the paths that the network follows in state space, settling from 
the initial pattern for one word to the h a l  pattern for the other. 
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with each item presented in a number of different tasks (e.g. 5). Thus, 
items in a small set of categories were repeatedly presented. It seems likely 
that KE would learn the categories and use this to limit the number of 
visual responses, as these would tend not to fall in one of the categories. 
In addition, a considerable number of mixed errors seem to occur, but this 
is not analysed in the paper. In the baseline testing situation, in which a 
word set containing a variety of types of word was used (the Johns Hopkins 
battery), KE is reported as making some errors “phonologidy andor 
visually related” to the target. However, there is no direct evidence that 
KE did learn to edit out putative visual errors. 

There appear to be two very different ways in which the absence of 
visudphonological errors in RGB and HW can be explained. The first 
concerns the strategy used by the patient. Deep dyslexic patients at times 
produce a circumlocutory response-they describe the meaning of the word 
rather than attempting to read it aloud. However, in general, such 
responses form only a small part of the patient’s output (e.g. GR, DE). 
In contrast, both RGB and HW produce many responses described as 
“definitions” of the words they are trying to read (21% and 28% of all 
non-correct responses, respectively). Caramazza and Hillis (1990) report 
that, in repetition tasks, RGB produced many circumlocutions, and HW 
often followed her errors with the comment, “I can’t say what you said 
but that is the idea.” Moreover, HW’s semantic errors in reading or naming 
were often followed by a definition, as in her response to a picture of 
grapes: “wine . . . but that’s not what it is, it’s what you do with it. . . .” 
As the patients were clearly frequently trying to communicate that they 
understood the word, it seems quite plausible that any potential visual/ 
phonological error (that would not be sense-preserving) would be edited 
out prior to articulation. After all, it is convincingly demonstrated that 
semantic access from the written word was unimpaired in both patients. 
Semantic errors, on the other hand, would be more difficult to detect as 
errors at the semantic level and could, in fact, serve as an approximation 
to the meaning for communication purposes. 

Alternatively, the lack of visudphonological errors in these patients 
may be explained by individual differences in the effects of qualitatively 
equivalent lesions in connectionist networks. The reported simulation 
results are the sum of a number (typically 20) of random samples of a given 
lesion type. In a network, qualitatively and quantitatively equivalent 
lesions, such as instances of 0 + I(0.3), have quantitatively different 
effects depending on the particular connections removed (also see Pat- 
terson et al., 1990). The reported results are means of distributions--the 
patients who make no visudphonological errors may correspond to the 
tail of one of the distributions. In fact, the chance rate of visual errors 
compared to semantic errors is much higher in the main simulations than 
it is in analyses of patient data. The simulations are therefore more sens- 
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itive to the presence of a low rate of visual errors than are the reported 
empirical observations (see the section of “Quantitative Adequacy” 
earlier). 

Neither of these solutions to the problem posed to our modelling work 
by the three patients of Caramazza, Hillis, and colleagues is completely 
satisfactory. In our account of deep dyslexia, we have accepted that a 
response produced by a patient can be modelled directly by the output of 
our network(s), and that the means of the effects of 20 qualitatively and 
quantitatively equivalent lesions can model the responses produced by a 
patient with only one lesion. Our two possible accounts of the patients 
who make no visual errors imply that at least one of these.assumptions 
can at best hold only for the large majority of patients. The theory cannot 
apply in its strongest form to the results produced by all patients who read 
solely by the semantic route as a result of neurological damage. 

Acquired Dysgraphia. The final characteristic of deep dyslexia that 
Coltheart et al. (1987, p. 145) describe is that “if a patient makes semantic 
errors in reading isolated words aloud he or she will also . . . have impaired 
writing and spelling.” They argue that this impairment will involve either 
a global or a deep dysgraphia. However, the converse relation does not 
hold; there are deep dysgraphic patients who are not deep dyslexic (e.g. 
Bub & Kertesz, 1982; Howard & Franklin, 1988; Newcombe & Marshall, 
1984). The simple presumption, that the processing systems and connec- 
tions involved in writing are the same as those involved in reading, cannot 
easily be held; moreover it is not computationally plausible. 

According to the present account, deep dyslexia depends on the co- 
Occurrence of at least two major types of damage: the fmt to the phono- 
logical route, and the second (less severe) to the semantic route. One 
possible explanation of deep or global dysgraphia without deep dyslexia is 
that, in most people, writing is a less well-learned skill than reading, and 
so would be more vulnerable to the effects of brain damage. Given this, 
and the fact that both reading and writing make use of common semantic 
and phonological systems, damage that is sufficient to produce deep dys- 
lexia would seem likely to impair writing and spelling as well. On this 
account, though, deep dyslexia without deep or global dysgraphia should 
eventually be observed. Indeed, relatively recovered pure alexic patients 
(Coslett & Saffran, 1989) would seem to fit this pattern (also see the 
patients of Beringer & Stein, 1930, and Faust, 1955, discussed by Marshall 
& Newcombe, 1980). 

Visual vs. PhonologicaI Errors. It has frequently been suggested that 
some deep dyslexic patients have an impairment in accessing phonological 
lexical representations from semantics (e.g. Friedman & Perlman, 1982; 
Patterson, 1978; Shallice & Warrington, 1980). There are three main lines 
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of evidence that lead to this conclusion. First, certain patients (e.g. PW 
and DE; Patterson, 1978) frequently select the presented word when off- 
ered a choice between it and their semantic error, implying that they know 
the presented word. Second, in auditory-visual matching these patients 
again usually select the presented word rather than their visual error. 
Third, certain patients perform as well on visual word-picture matching 
as on auditory word-picture matching, and perform both at close to normal 
levels (e.g. VS, Saffran & Marin, 1977; PW, Patterson, 1979), although 
others are much worse with visual than with auditory presentation of words 
(e.g. PS, Shallice & Coughlan, 1980; KF, Shallice & Warrington, 1980). 

Our simulations present a potential problem for this argument. The 
output network develops strong phonological attractors in the same way 
that the input network develops strong semantic attractors. Thus, for the 
same reason that damage to the input network produces visual and 
semantic errors, damage to the output network would be expected to 
produce semantic and phonologicu2 errors. This prediction conflicts with 
the inclusion of visual errors per se as a symptom of deep dyslexia. 

The word sets used in the current simulations were not designed to 
differentiate phonological from visual errors. Yet pure phonological errors 
(e.g. HAWK+ “tor”) certainly occur when the output pathways are 
lesioned. Whether phonological errors occur in deep dyslexia has never to 
our knowledge been empirically investigated, although Goldblum (1985) 
suggests that the so-called visual errors are actually phonological. How- 
ever, inspection of the error corpora for a number of patients (Coltheart 
et al., 1980, Appendix 2) does not support this interpretation. If one takes 
PW, for example, many errors are more easily explained as visual (e.g. 
ORATE --+ “over,” CAMPAIGN + “camping”) but only one is easier 
to explain as a phonological error (GRIEF + “greed”). Attempts to simu- 
late the three empirical phenomena that suggest an output lesion might 
reveal that they are compatible with an input lesion, or more particularly 
a lesion to the semantic system itself. In any case, the area requires further 
empirical study and simulations. 

Theoretical Issues 
The connectionist account of deep dyslexia that we have developed from 
the position advocated by Hinton and Shallice (1991) is based upon four 
assumptions, listed in the section on “Critical System Properties,** con- 
cerning the process of mapping orthography to semantics. The 6rst two of 
these are standard assumptions within connectionist modelling. Another, 
concerning the difference between representations of abstract and concrete 
words, is derived from earlier theorising. Only one, concerning attractors, 
is at all original to the present approach. In addition to these four assump 
tions, two more are necessary to account for additional characteristics of 
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deep dyslexia. The first, that the mapping from orthography to semantics 
is isolated from phonological infiuences, is standard in accounts’of deep 
dyslexia (see Coltheart et al., 1980). The second, that the pathway from 
orthography to semantics is also affected by a lesion, is widely but not 
universally held (see Shallice, 1988a, for discussion). 

If one takes the nine characteristics held to apply to deep dyslexia by 
Coltheart et al. (1987), three are directly explained in a principled fashion 
on the present account (semantic errors, visual errors, concrete word 
superiority). Three more (derivationdmorphological errors, the part-of- 
speech effects, and function word substitutions) follow in a straightforward 
fashion from the simulations, even though they have yet to be imple- 
mented. An additional two are an immediate consequence of one standard 
assumption, that of the absence of phonological processing. Only one, the 
relation between reading and writing, is at all problematic. In addition, 
the simulations offer principled accounts of five other phenomena that have 
been widely investigated empirically: relatively high rates of mixed visual- 
and-semantic errors, the interaction of semantic factors in the genesis of 
visual errors, confidence in error types, lexical decision, and, most surpris- 
ingly of all, the visual-then-semantic errors. However, as discussed in the 
preceding section, there are a number of other less central aspects of the 
disorder which are not yet well accommodated within the approach. 

Our account differs from others provided for deep dyslexia-and with 
few exceptions (e.g. Miceli & Caramazza, 1990; Mozer & Behrmann, 
1990), for cognitive neuropsychology as a whole-in providing what we 
have called a “principled account.” By this, we mean that (1) many aspects 
of the syndrome are explained from a common set of basic assumptions, 
rather than requiring specific extra assumptions for each aspect; and (2) 
the explanations are derived from the assumptions computationally rather 
than intuitively. Consider, as an example, the shared-feature semantic 
error itself. Various theoretical accounts have been given as to why such 
errors should occur. Coltheart (198Od), in his review of the phenomenon, 
considers two theories, but rejects one, the imagery explanation, as being 
empirically much inferior to the other, The second one, the Marshall and 
Newcombe (1966) account, takes a position derived from Katz and Fodor 
(1963) in arguing that the patient lacks the ability to descend a hier- 
archically organised semantic tree to the appropriate terminal leaf when 
deriving a phonological form from a semantic representation. Yet, as Colt- 
heart points out, this account would not explain the standard non- 
synonymous co-ordinate errors (e.g. NIECE + “aunt”). He suggests 
(Coltheart, 198Od, p. 153): “one needs to suppose that when a determiner 
is lost, sometimes it leaves some trace: The patient knows that a determiner 
is lost, so supplies one, without having any way of selecting the correct 
determiner.” Although Coltheart provides some limited empirical argu- 
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ments in favour of this amended Marshall and Newcombe position, his 
amendment is not derived from any deeper assumptions and is not used 
in the explanation of any other phenomenon. It remains, therefore, 
theoretically ad hoc. The account given by Shallice and Warrington (1980) 
suffers from similar problems to that of Marshall and Newcombe (1966), 
and that of Morton and Patterson (1980) introduces specific ad hoc assump 
tions. By contrast, on the present account, the existence of semantic errors 
essentially derives from the assumption of attractors, which is also used in 
explaining many other aspects of the syndrome. 

The Right Hemisphere Theory 

Two other main classes of theory have been put forward to account for 
deep dyslexia: the multiple functional impairments position (e.g., Morton 
& Patterson, 1980; Shallice & Warrington, 1980) and the right hemisphere 
theory (Coltheart, 1980b; 1983; SafFran et al., 1980; Zaidel& Peters, 1981). 
The current account adopts the “subtraction” assumptions taken by the 
multiple functional impairm&t theories, whereby impaired behaviour is 
explained by the damaged operation of the Same mechanism that subserves 
normal behaviour. In a sense, our account is a specific version of this class 
of theory. However, as discussed in the Introduction, multiple functional 
impairment theories have problems in limiting the number of postulated 
impairments, and the locus of damage that explains one symptom often 
differs from that assumed for another. The present version has two advant- 
ages in addition to the principled nature of its predictions: It can explain 
a wide range of symptoms by assuming that the isolated semantic route is 
subject to only one locus of lesion, and it can also explain why a number 
of different loci of lesions give rise to qualitatively similar patterns of 
symptoms. 

The right hemisphere theory of deep dyslexia differs from multiple func- 
tional impairment theories in that many aspects of the syndrome are 
derived from a common caw. Here, though, the extrapolation from the 
basic assumption is an empirical one: The reading behaviour of deep dys- 
lexic patients shares aspects with that of other patients known to be reading 
with the right hemisphere (and normal subjects under brief left-lateralised 
presentation). The adequacy of these correspondences is a matter of 
ongoing debate (see Barry & Richardson, 1988; Baynes, 1990; Coltheart 
et al., 1987; Glosser & Friedman, 1990; Jones & Martin, 1985; Marshall 
& Patterson, 1983; 1985; Patterson & Besner, 1984a; 1984b; Patterson et 
al., 1989; Rabinowicz & Moscovitch, 1984; Shallice, 198th; Zaidel & 
Schweiger, 1984). Moreover, a recent PET study (Howard, Wise, & Pat- 
terson, personal communication) suggests that deep dyslexic patients may 
vary in this respect. In two patients, the left hemisphere seemed to have 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
T
o
r
o
n
t
o
]
 
A
t
:
 
1
9
:
4
9
 
1
6
 
F
e
b
r
u
a
r
y
 
2
0
1
0



482 PLAUT & SHALUCE 

little remaining tissue outside the visual cortex. The third patient’s scan, 
however, showed a much smaller lesion confined to part of the posterior 
left hemisphere. The lesion in a fourth patient, with deep dysphasia and 
surface dyslexia, was very similarly located. 

For the present approach, the critical point is that a connectionist 
account can be orthogonal to one based on right hemisphere reading. If 
the right hemisphere reads by the same principles as the normal mechanism 
for reading via meaning (although perhaps less effectively), then the con- 
nectionist account could still apply. In addition, one would not have to 
postulate independently that the right hemisphere reading process has a 
particular set of propertie+they could be inferred from the connectionist 
account. Moreover, the connectionist account could also explain reading 
patterns similar to deep dyslexia that are based on left hemisphere reading 
(and so can be abolished by a second, left hemisphere stroke; Roeltgen, 
1987). In such an account, the total reading system would contain both 
left hemisphere and right hemisphere units and connections (as well as 
inter-hemispheric connections), with the left hemisphere ones being more 
numerous. However, the compatibility of the connectionist and right hemi- 
sphere accounts of deep dyslexia depends on the assumption that right 
hemisphere reading differs from normal reading only quantitatively and 
not qualitatively. In their review, which is broadly favourable to the right 
hemisphere theory, Coltheart et al. (1987) leave this issue open. 

Attractors vs. Logogens 

At a more detailed level, the operation of attractors plays a central role 
in our account of deep dyslexia. How do attractors relate to other theor- 
etical concepts that have been used in explaining deep dyslexic reading 
behaviour? The most commonly used concept with some relation to an 
attractor is that of a logogen (Morton, 1969; Morton & Patterson, 1980). 
We take the defining characteristic of a logogen to be that it is a represen- 
tation of a word, with an associated activity level, in which all of the 
information of a particular type relating to the word is packaged together. 
In the logogen model, words are related to other words via information 
that is external to the logogens themselves. In this way, logogens operate 
much like localist representations in connectionist networks (Feldman & 
Ballard, 1982; Maelland & Rumelhart, 1981). 

The attractor network that would appear to be closest to the updated 
logogen model of Morton and Patterson (1980), as far as the process of 
reading via meaning is concerned, is the 40-8oi network, in which attractors 
are built at the level of the intermediate units between orthographic and 
semantic representations. However, a major difference between the 
logogen model and this attractor network should be noted. The similarity 
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metric of the relation between logogens is purely visdorthographic. If 
the activation level of a second logogen is near to that of the one that 
reaches threshold then this implies only that the two represent stimuli that 
are visually similar. In contrast, the similarity metric for attractors is both 
visual and semantic. Thus, damage to attractors can produce both visual 
and semantic influence in errors, whereas damage to logogens can result 
only in visual confusions. 

However, a system in which semantics can feed back to influence the 
input logogens might also show semantic errors after damage. In fact, on 
the output side, Dell (1986; 1988) uses an interactive system with localist 
lexical units to model semantic and phonological influences in speech pro- 
duction errors. One might imagine that an analogous system on the input 
side would, under damage, replicate our findings of co-occurrences of 
visual, mixed visual-and-semantic, and semantic errors under damage. To 
test this possibility, we developed a DBM model that maps orthography 
to semantics via 40 intermediate units trained to be localist lexical repres- 
entations (i.e. each unit responds to exactly one word and is inactive for 
all others). After lesions, the network produces explicit error rates that 
are higher than in most of our simulations, but the increase is almost 
exclusively limited to other errors. Although the rates of visual errors are 
well above chance, the rates of semantic errors are only slightly above 
chance, even for lesions within semantics itself (S ++ S lesions). Further- 
more, the semantic errors are partidarly idiosyncratic: Over 20% of all 
semantic errors is the particular error CAN --., “mug.” In fact, the 
responses “mug” and “bone” account for over half of all semantic errors. 
Clearly this is an unsatisfactory account of the deep dyslexic error pattern, 
and nothing like that shown by the DBM with distributed intermediate 
representations. However, our failure at implementing a localist network 
that reproduces deep dyslexia is only suggestive of the difficulties that 
others may encounter (cf. Martin, Dell, Saffran, & Schwartz, Note 6). 

A full consideration of the issue of loCalist vs. distributed representations 
is far beyond the scope of this paper (for discussion, see Feldman, Fanty, 
& Goddard, 1988; Hinton et al., 1986). Here we raise only one general 
issue, relating to the degree to which words can operate independently. In 
a localist representation, words can influence other parts of the system in 
a manner unrelated to the way similar words have influence (e.g. in gener- 
ating a pronunciation from semantics). This is a strong advantage because 
the meanings of words are arbitrarily related to their spellings and pronun- 
ciations. For this reason, reading for meaning is the paradigmatic domain 
in which locaiist representations would appear most appropriate (Hinton 
et al., 1986). However, capturing the similarity among words involves 
maintaining the similarity of their incoming and outgoing weights. In 
contrast, in a distributed representation, words can have effects onZy by 
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virtue of their features, and so other words tend to have similar effects to 
the degree that they share those features. The use of attractors is a way 
of compensating for this bias of distributed representations in domains 
where it is problematic, but the underlying effects of similarity are revealed 
under damage. Thus, loCalist and distributed representations are distin- 
guished by what is natural for each approach, rather than by what is strictly 
possible or impossible. 

Extensions of the Approach 

The connectionist account we have provided for deep dyslexia would seem 
to be directly generalisable in three ways. The first concerns other types 
of reading disorders in which processes operating between the orthogaphic 
and semantic levels are relevant. Hinton and Shallice (1991) argued that 
aspects of semantic access dyslexia and pure alexia were explicable in terms 
of the model. In the context of the current simulations, we have also 
considered neglect dyslexia (Caplan, 1987; Kinsbourne & Wamngton, 
1962; Riddoch, 1991; Sieroff, Pollatsek, & Posner, 1988). Howard and 
Best (Note 5 )  have recently described two patients of this type. Both 
patients produce abnormally slow responses to stimuli on the right (contra- 
lesional) side after being miscued to the left, and make many more errors 
on the right parts of words in reading, nearly all of which are visual in 
nature. Of particular interest is that these patients show marked image- 
ability/concreteness effects, especially for longer words. M.-P. de Partz 
(personal communication) has found similar effects in another neglect dys- 
lexic patient. 

Mozer and Behrmann (1990) have modelled neglect dyslexia in terms 
of a connectionist network that operates on principles similar to ours. On 
their model, neglect dyslexia is caused by an attentional deficit that results, 
on average, in a gradient of activation over low-level visual representations 
of words. The activity is higher on the ipsilesional side and diminishes 
monotonically to be lowest contralesionally. Our input network may be 
thought of as a different implementation of the portions of their model 
that operate on these low-level representations, with our clean-up pathway 
corresponding to their PULL-OUT net. We therefore considered the effect 
of presenting the intact abstract/concrete network with monotonically 
degraded input (activations of 1.0, 0.83, 0.67, 0.5, across feature letter 
units from left to right, corrupted by normally distributed noise with 
standard deviation 0.1). Using analogous testing procedures to those used 
in the abstract/concrete simulations, the ouput was 77/% correct for con- 
crete words but only 47% correct for abstract words. In the predominant 
error form-visual errors-55% of the first and second letters were correct 
but only 29% of the third and fourth letters. Thus, the simulation shows 
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the same combination of imageability and neglected characteristics as do 
Howard and Best’s patients.21 Hence, it seems plausible that the model 
coad be utilised as part of the explanation of the patterns of impairment 
shown by dyslexic patients other than the deep dyslexics with whom this 
paper has been concerned. 

The second plausible generalisation of the approach is to other syn- 
dromes in which an inputloutput mapping can be accomplished only via 
semantics. The two most obvious syndromes for which an analogous 
explanation could be given are the parallels to deep dyslexia in the auditory 
domain (deep dysphasia) and in writing (deep dysgraphia). 

Deep dysphasia involves the co-occurrence of semantic and phono- 
logical errors in repetition, and a concrete word superiority (see, e.g., 
Howard & Franklin, 1988; Katz & Goodglass, 1990; Martin & Saffran, 
1990; Michel & Andreewsky, 1983; Morton, 1980). In some patients (e.g. 
NC of Martin & Saffran, MK of Howard & Franklin), the parallel with 
deep dyslexia is very close, as the phonological errors in oral repetition 
are normally phonologically related words. In other patients (e.g. R of 
Michel & Andreewsky), responses that are phonologically related to the 
target are often literal paraphasias. In general, though, this syndrome 
would fit with an explanation in which repetition must rely on partially 
impaired semantic mediation, because damage has eliminated the stand- 
ard, direct route from input phonology to output phonology (see Howard 
& Franklin, 1988; Katz & Goodglass, 1990; Morton, 1980). Martin et al. 
(Note 6) describe a connectionist simulation of deep dysphasia that 
embodies rather different assumptions from ours about the origins of the 
patients’ difficulties. 

If semantic mediation in writing operates by principles analogous to 
those for reading, then the corresponding pattern of symptoms would be 
expected to result from lesions. In fact, essentially the same arguments 
that apply for deep dyslexia also apply for deep dysgraphia (see, e.g., Bub 
& Kertesz, 1982; Howard & Franklin, 1988; Newcombe & Marshall, 1984). 
Speci6cally, phonological mediation in writing is inoperative, and semantic 
mediation suffers from damage complementary to that in the reading pro- 
cesses simulated in current work. 

Third, and more generally, any domain that involves mapping between 
arbitrarily related domains, analogous to orthography and semantics, 
would be expected to give rise to error patterns that are analogous to those 
found in deep dyslexia (except for aspects that are specific to othography 

tFThe patients produce virtually no semantic errors, whereas the simulation produces some 
(but very few relative to the lesion simulations). However, it should be noted that the patients 
may be able to make some use of orthographic-to-phonological procc~s, not available to the 
network. to edit out semantic errors. 
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or semantics, such as the effects of concreteness). Along these lines, Plaut 
and Shallice (1993) account for the semantic and perseverative influences 
in the visual naming errors of optic aphasic patients by generalising the 
current approach to the mapping from high-level visual representations of 
objects to semantics. 

The Impact of Connectionist Neuropsychology 
Deep dyslexia was first described in a single patient, GR (Marshall & 
Newcombe, 1966), but it soon began to be conceived as a symptom- 
complex (Marshall & Newcombe, 1973), and then as a syndrome-that is, 
as a collection of behaviours arising from a specific functional impairment 
(Coltheart, 1980a; Marshall & Newcombe, 1980). Almost immediately this 
position was criticised. Morton and Patterson (1980) rejected the concept 
of a syndrome. Shallice and Warrington (1980) argued that the pattern of 
symptoms could have a number of different origins (also see Coltheart & 
Funnell, 1987). Caramazza (1984) and Schwartz (1984) argued against the 
general methodology of assuming that frequently observed combinations 
of symptoms represented the effects of a single underlying impairment. 
One of us (Shallice, 1988a), although willing to accept syndromes based 
on dissociations, rejected errors in particular as a fruitful basis on which 
to generalise across patients. Even Coltheart et al. (1987), in their later 
review, seem rather pessimistic about characterising deep dyslexia as a 
syndrome, unless the right hemisphere theory were correct. 

The present investigation has both positive and negative theoretical 
implications for the validity of the concept of a syndrome, in deep dyslexia 
and more generally (also see Shallice & Plaut, 1992). On the positive side, 
the work was motivated by the possibility that deep dyslexia is indeed a 
coherent functional entity. However, there is a critical difference in the 
nature of the functional entity as envisaged in the current research, and 
the formulation that has been accepted, either implicitly or explicitly, both 
by critics (e.g. Caramazza, 1984; 1986) and by defenders (e.g. Coltheart, 
1980a; Shallice, 1988a) of the syndrome concept. According to the standard 
formulation, if a symptom-complex is to be of theoretical interest, it must 
arise from the same functional lesion site for all patients who exhibit it. If 
it can be demonstrated that some aspects of the symptom-complex do not 
always co-occur across patients, then this is considered evidence that the 
symptom-complex can arise from more than one locus of damage. The 
symptom-complex becomes a “psychologically weak syndrome” and hence 
of little or no theoretical interest (see Caramazza, 1984; Coltheart, 1980a, 
for relevant discussion). 

Although this logic seems appropriate for theoretical analyses in terms 
of conventional “box-and-arrow” systems, the present research shows that 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
T
o
r
o
n
t
o
]
 
A
t
:
 
1
9
:
4
9
 
1
6
 
F
e
b
r
u
a
r
y
 
2
0
1
0



DYSLEXIA 81 CONNECTIONIST NEUROPSYCHOLOGY 487 

it is not appropriate for at least some connectionist systems. Part of the 
overall symptom pattern may occur as a result of lesions in man), parts of 
a complex system, for reasons that derive directly from the nature of the 
computation that the whole system is carrying out. An example is given 
in the present simulations by the qualitative similarity of error patterns 
whenever lesions are made between orthographic input and phonological 
output. At the same time, other aspects of the symptom-complex may 
differ between lesion sites. Thus, lesions to the clean-up network do not 
show the concrete word superiority effects shown by lesions to the direct 
pathway, even though they produce the same qualitative pattern of visual 
and semantic similarity in errors. This means that, even when patients 
differ in some respects, the aspects of their behaviour that are similar may 
still have a common functional origin. Thus, considering these patients 
together may be a valuable guide to understanding the impaired system. 
In this way, even the existence of so-called “weak syndromes” can be 
theoretically productive. 

There is also a negative side to the general methodological implications 
of the current simulations. Hinton and Shallice (1991) showed that a 
“strong dissociation” (Shallice, 1988a) between the processing of different 
semantic categories can occur when particular lesions are made to the 
clean-up pathway. The category foods was selectively preserved in a 
striking manner. However, when lesions were made to a second network 
that was essentially the same except for the use of a different random 
starting point for the learning procedure, the dissociation did not occur. 
The present simulations show similarly dramatic effects when the same set 
of connections are lesioned, but again, minor changes in architecture lead 
to different category effects: Animals were performed over 20 times better 
than body parts for the I W 5 d  network, and over 3 times better than 
outdoor objects in the 40-40fb network. It would appear that the strong 
dissociations obtained may reflect idiosyncrasies in the learning experience 
of particular networks. 

Almost two decades ago, Marin et al. (1976) responded to criticisms of 
the relevance of neuropsychological findings for understanding normal cog- 
nition by pointing to high-energy physics, where studying the effects of 
random damage has produced substantial theoretical results. The results 
obtained in this paper, together with analyses of equivalent depth that are 
beginning to be made of other syndromes as well, suggest that the analogy 
may be closer than Marin and colleagues intended. If our simulations are 
valid, in principle even if not in detail, then neuropsychological evidence, 
such as deep dyslexia syndrome, will provide strong support for a particular 
organisation of the cognitive system that would probably prove difficult to 
obtain by the use of experiments on normal subjects. On the other hand, 
without detailed simulations, appropriate interpretations of many aspects 
of the syndrome would be virtually impossible. In this case, cognitive 
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neuropsychology will benefit most extensively frQm an interplay between 
empirical and computational approaches in future work. 

Manuscript received 1 February 1991 
Revised manuscript received 28 August 1992 
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APPENDIX: DETERMINISTIC BOLTZMANN 
MACHINES 

Deterministic Boltzmann Machines (Peterson & Anderson, 1987; Hinton, 
1989b) were originally derived as mean-field approximations to stochastic 
Boltzmann Machines (Ackley et al., 1985; Hinton & Sejnowski, 1983). 
However, in order to simplify the presentation we will describe only the 
deterministic version. The units in a DBM are closely related to those in 
a standard back-propagation network. The output, or state s?) of each unit 
i at time t is a nonlinear function of its summed input. 

Unit states change gradually over time, so that the new state is a weighted 
average (with proportion A = 0.6 for our simulations) of the old state and 
the contribution from the new input. The hyperbolic tangent function 
“tanh” is the symmetric version of the sigmoid function, ranging from - 1 
to 1 instead of 0 to 1, and T is a parameter called temperature that adjusts 
the sharpness of the sigmoid (see Fig. 22). Also, each connection is bi- 
directional and each weight is symmetric, so that wii = wii. 

Energy Minirnisation 
As in a back-propagation network, input is presented to the DBM by 
clamping the states of some designated input units. If the other units in 
the network update their states synchronously and repeatedly according 

Summed input 
FIG. 22 The input-output function of units in a DBM for four different temperatures. 
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to Equation 1, it can be shown (Hopfield, 1984) that the network will 
eventually settle into a set of states corresponding to a minimum of the 
Fee energy function, 

F = - 2 sisjwq + T 3 (si log s: + (1 - s:) log( 1 - s:)) (2) 
i< j 

where s: = (si + 1)n. The first term corresponds to the energy of the 
network, and measures the extent to which the states of units satisfy the 
constraints imposed by the weights. If two units have a positive weight 
between them and both have positive states (satisfying the constraint), the 
contribution of the weight to the energy will be positive, thus reducing the 
total energy. If the units have states of opposite sign (violaring the con- 
straint of the weight), their contribution will be negative and will increase 
the energy. The second term corresponds to the negative of the entropy 
of the network (weighted by temperature), and measures the degree to 
which unit states are at their extremes. At T = 1, the term for a unit has 
a minimum values of log(0.5) = -0.693 when the unit is least extreme 
(has a state of 0) and approaches 0 as the unit’s state approaches +1. 
Minimising the free energy F amounts to finding nonextreme unit states 
that satisfy the weight constraints. 

It may help to think of a state space that is analogous to weight space, 
but has a dimension for the state of each unit in the network, and an extra 
dimension for free energy. For a given set of weights, each possible pattern 
of activity over the units can be represented as a point in state space, whose 
height along the extra dimension corresponds to its free energy. The entire 
set of these points forms an energy surface in state space, with hills and 
valleys, analogous to the error surface in weight space (see Fig. 11). The 
initial unit states define a starting point on this surface. As each unit 
updates its state according to Equation 1, the pattern of activity of the 
network as a whole can be thought of as descending along the free energy 
surface to find a minimum. This minimum is exactly what we have been 
calling an attractor, and the free energy valley containing it, its basin of 
attraction. 

Simulated Annealing 
The network as defined thus far will always settle into some minimum of 
the free energy function F. It is possible to help it find a good minimum, 
with a low value of F, by varying the temperature T during settling. In 
particular, it is useful to start T at a very high value T,, corresponding 
to a very flat sigmoid function, and then gradually reduce it, sharpening 
the sigmoid, to a final value of 1. In our simulations, we use an exponential 
decay rate for T, 
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T@)=l+G& (3) 
where Ta = 50 and d = 0.9. This procedure is the deterministic analogue 
of stochastic simulated annealing (Kirkpatrick, Gelatt, & Vecchi, 1983), 
which is a commonly used global optimisation technique. It is also called 
gain variution (Hopfield & Tank, 1985; Nowlan, 1988) because the summed 
input of each unit is multiplied by a gain factor of 1/7”) that gradually 
increases during settling. The rationale for this procedure is that it provides 
a kind of progressive refinement. At high temperature, the input to a unit 
must be very large for it to produce any significant response (see Fig. 22 
for T = 20). Thus, only the units that are most strongly constrained to 
have positive or negative states initially become active. As the temperature 
is lowered, units require less input to become active, and becomes sensitive 
to weaker constraints. Only near the end of annealing do very subtle 
constraints have influence. 

The settling process in a DBM is analogous to the forward pass in 
back-propagation, in the sense that both compute a set of output states 
for a given input. However, the existence of a well-defined energy function 
that characterises this process in a DBM is a major advantage. Although 
it is possible to compute the value of F for the states and weights in a 
back-propagation network, there is no direct relationship between this 
value and the actual operation of the network. In contrast, the value of F 
for a DBM, either during settling or at a minimum, provides a direct 
measure of how well the network is satisfying the constraints of the task. 
Furthermore, it is possible to compute F separately for different sets of 
connections and units. This makes it possible to locate where in the network 
constraints are being violated when it produces an error under damage. 

Another advantage of a DBM over the type of back-propagation net- 
work we have used is that the settling process is much more gradual- 
typically involving 100 or so iterations, compared with 14 for the back- 
propagation networks. Although this significantly increases the computa- 
tional demands of simulations, it enables a much finer-grained analysis of 
the time-course of processing an input (but see Pearlmutter, 1989, for a 
continuous version of back-propagation through time). For example, we 
can compare the “goodness” of the semantic and phonological representa- 
tions (defined in terms of free energy) throughout the course of pro- 
nouncing a word. However, the need for long settling times may make the 
procedure somewhat less biologically plausible, since individual neurons 
can generate only about 100 spikes in the time required by humans to 
interpret visual input (Feldman & Ballard, 1982). 

Contrastive Hebbian Learning 

Initially, the weights in the network are set to small random values (be- 
tween f0.5 in our simulations). When an input is presented, the network 
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will settle into a minimum of F, perhaps even the best possible minimum 
if simulated annealing is used. However, because the weights are random, 
the states of the output units at this minimum are very unlikely to corres- 
pond to their correct states for this input. Thus, we need a procedure for 
adjusting the weights in the network to make it more likely that the 
minimum that the network settles into, given some input, has the appro- 
priate output unit states. 

The training procedure for a DBM is remarkably simple and intuitive, 
although its derivation is beyond the scope of this paper. It is directly 
analogous to the procedure for stochastic Boltzmann Machines (Ackley et 
al., 1985). It takes the form of a negative phase and a positive phase for 
each input/output pair. The negative phase is just the settling process 
described earlier: The states of the input units are clamped and the network 
is annealed to settle into a set of states corresponding to a free energy 
minimum. The positive phase is run exactly like the negative phase except 
that, in addition to clamping the input units, the output units are clamped 
into their correct states. Intuitively, the positive phase amounts to guiding 
the network to produce the-correct response, and the negative phase 
amounts to letting the network try to produce the correct response on its 

If the network has learned the task, the states of the output units should 
be the same in the positive and negative phases. We will use s; to designate 
the state of unit i at the minimum for the negative phase, and s t  for its 
state at the minimum for the positive phase. If each weight is changed 
according to 

Own. 

Aw, = E(S;S; - ~ 7 ~ 7 )  (4) 
then, for small enough E, the network performs steepest descent (in weight 
space) in an information-theoretic measure of the difference between the 
output unit states in the positive and negative phases (Hinton, 1989b).% 
The form of this learning rule is simply the product of unit states in the 
positive phase minus their product in the negative phase. This makes sense 
if we think of the states in the positive phase as roughly corresponding to 
correct behaviour, and remember the discussion earlier on how states and 
weights contribute to the total free energy. If the states of the two units 
in the positive phase are either both positive or both negative, it is good 
(i.e. lowers the energy) for the weight to be positive, and it is incremented. 
We subtract off the product for the incorrect performance in the negative 

mActually, this is only true if, in the negative phase, the probability of an output vector 
given an input vector is defined in terms of the free energies of the minima that the network 
actually settles to in the positive and negative phases, rather than by interpreting the real- 
valued output vector as representing a probability distribution over possible binary output 
vectors under a maximum entropy assumption (i.e. that the unit states represent independent 
probabilities). 
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phase. If the product is not as high in this phase as in the positive phase, 
the net weight change will be positive. This increase in the weight will 
make it more likely in the future for one unit to be active when the other 
is active, thus increasing the product of their states, In this way, learning 
can be thought of as shaping the energy surface, lowering the surface 
(decreasing the energy) for good combinations of states and raising it for 
bad ones. These changes make it more likely that the network will settle 
into a good minimum on the next presentation of the input. 

Contrastive Hebbian learning is more biologically plausible than back- 
propagation for a number of reasons. Although the procedure still requires 
information about the correct states of output units, this information is 
used in the same way as information about the input-that is, by prop- 
agating weighted unit activities, rather than by passing error derivatives 
backward across connections. This difference makes its easier for one part 
of a large DBM to train another part, if the first part can set the states of 
the output units of the second part appropriately. In addition, there is 
direct neurophysiological evidence of a Hebbian learning mechanism in at 
least some parts of the brain (Cotman & Monaghan, 1988; Dudai, 1989). 
Although the need for symmetric weights is of some concern, connection 
pathways between brain areas are virtually always reciprocal (Van Essen, 
1985), and initially asymmetric weights gradually become symmetric if they 
are given a slight tendency to decay spontaneously towards zero (Galland 
& Hinton, Note 1: Hinton, 1989b). 

Although contrastive Hebbian learning in a DBM is a relatively new 
learning paradigm, it has been applied to problems of moderate size with 
reasonable success (Gallard & Hinton, Note 2; Peterson & Hartman, Note 
8). In general, the number of required training presentations is comparable 
to that for back-propagation, although a DBM can require considerably 
more computation in processing each sample due to its more gradual 
settling process. 
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