Word Readingn DamagedConnectionistNetworks:
ComputationabindNeuropsychologicdimplications

David C. Plaut Tim Shallice
Departmenbf Psychology Departmenbf Psychology
Carngyie Mellon University University College
Pittsturgh, PA 15213-3890 London,EnglandWC1E6BT

pl aut +@mu. edu ucjtsts@ucl.ac. uk

In R. Mammone(Ed.) Artificial neural networksfor speeb andvision
(pp.294-323).London:Chapmar& Hall, 1994.

1 Introduction

Connectionishetworks arealso called neural networks becausef their abstracttructuralsimi-

larity to groupsof neurons Basedon this similarity, mary researcherbelieve thatcomputationn

thesenetworks reflectsimportantpropertiesof neuralcomputation.Onepieceof evidenceoften

put forward in supportof this claim is that, like brains,connectionishetworks tendto degrade
gracefully with damage. Thatis, if someproportionof units and/orconnectionsare removed

from a network, performanceon a taskis typically only partially impairedratherthancompletely
abolished.Most demonstrationsf gracefuldegradationin networks have usedonly very general
measure®f performancesuchastotal error on a task. However, the argumentthat connection-
ist computationis fundamentallysimilar to neural computationwould be far more compelling
if the way in which connectionisnetworks degradedunderdamage—theipatternsof impaired
performance—mirrorethe patternsof impairedbehaior obsened in patientswith neurological
damage.To the extentthatthis held, a detailedinvestigationof the behaior of damagedonnec-
tionist networkswould provide insightinto both normalandimpairedhumancognition.

A complementarynotivation for studyingthe effectsof damagean networksis to extendour
understandingf the natureof computationin the networksthemseles. Hereagain,our concern
is not just with the developmentof a network that accomplishes task, but with understanding
howthe network accomplisheshe task—thenatureof its representationandprocessesln most
connectionistesearchtheadequag of anetwork is evaluatedby testinghow well its performance
generalize$o novel externalinput drawvn from the samedistribution asthe trainingexamples.n a

*Wewouldlik eto thankMarleneBehrmanrfor commentingopn anearlierdraft. All of thesimulationsdescribedn
this paperwererun on a Silicon Graphicslris-4D/240Susingan extendedversionof the Xerion simulatordeveloped
by Torny Plate.Thisresearclwassupportedy grant87-2-36from the Alfred P. SloanFoundation.
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similar way, damageo a network hasthe effect of generatinginfamiliar actwity in theremaining
portionsof thenetwork . However, damagecanaffect internalrepresentations waysthatcannot
be directly mimicked by manipulationsof the externalinput. Thus,the behavior of the network
underdamagemay provide a moregeneral,andfor somepurposesmoreinformatie, indication
of the natureof therepresentationandprocessethe network developsduringtraining.

In studyingpatientswith braindamagethefield of cognitive neuropsychologgttemptgo re-
late their patternsof impairedand presered abilities to modelsof normal cognitive functioning,
with theintentboth of explainingthe behavior of the patientsin termsof the effectsof damagen
themodel,andof informing the modelbasedn theobsenedbehavior of patientdCol85, EY88].
In ananalogougashion this chaptempresentanapproactihatmightbecalled“connectionisheu-
ropsychology in which analyse®f the effectsof damagen connectionishetworksareusedboth
to provide acomprehensi, detailedaccounof the cognitive deficitsof a particularclassof brain-
injured patients,andto clarify the natureof the representationandprocesseshatdevelopin the
networks themselesthroughlearning. To illustratethis approachwe will focuson anacquired
readingdisorderknown as“deepdyslexia,” in which patientscanpronouncea written word only
via its meaningandoccasionallymake errorsin this processThe chaptebeginswith asummary
of thesepatients’characteristicanda brief descriptionof a preliminaryconnectionismodel.Fol-
lowing this, resultsare presentedrom a systematidnvestigationof the major designdecisions
thatenterednto developingthe model,relatingto thetaskdefinition,the network architecturethe
training procedureandthe testingprocedure.In the interestof space someresultswill only be
summarizedere;detailsmaybefoundin [PS93]. The particularemphasi®of this chaptemwill be
onresults,not describedn thatpaper thatillustrate how studyingdamagedetworks canleadto
computationainsightsthatmight not arisesoclearlywithin othermethodologiesSpecifically re-
sultspresentetherepointoutsomeinherentdifficultieswith distributedoutputrepresentationgnd
clarify differencesn thecomputationapropertieof back-propagationetworksanddeterministic
BoltzmannMachinesrainedwith contrastve Hebbianlearning.

1.1 Deep Dyslexia

Brain damagecanproduceselectve impairmentsn awide rangeof cognitive domainsjncluding
high-level vision, attention speechandlanguagelearningandmemory planning,andmotor con-
trol. Theclassof impairmentsvhich perhapshave recevedthe greatestheoreticalattentionover
the lastdecadeor so arethosethatinvolve word reading,the so called“acquireddyslexias’ Of
thesedeepdyslexiais amongthe mostperpleing [CPM80]. Deepdyslexic patientscanonly read
via meaning,asevidencedby their almostcompleteinability to readmeaninglesgpronounceable
letter strings(e.g.,MAVE). However, they alsohave someproblemsreadingwords—whichhave
semantics—suggestirtgatthe procesdy which wordsaccesgheir meaningss alsoimpairedin
thesepatients.The natureof this additionalimpairments reflectedn the errorsthatdeepdyslexic
patientstypically make in oral reading—inparticular the occurrenceof semanticerrors(e.g.,CAT
= “dog”). However, what makesdeepdyslexia sucha theoreticalchallengeis that virtually all
patientsvho make semantierrorsalsoexhibit a peculiarcombinationof othersymptoms Central
amongtheseareothertypesof errors:visual(e.g.,CAT = “cot”), mixedvisual-and-semanti.g.,
CAT = “rat”), derivational(e.g.,WALKED = “walk”), andvisual-then-semanti(e.g. SY MPATHY
= “orchestra”,presumablyia symphony. Thesepatientsalsoproducesomeresponseshatare
completelyunrelatedto the stimulus(e.g., CAT = “mug”). Furthermoretheir ability to reada
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Figurel: Thenetwork architecturausedby Hinton andShallice.Arrows represensetsof connec-
tionsthatwerelesionedn the study—thg arelabeledby theinitials of the sourceanddestination
layers(e.g.,G="1 for grapheme-to-intermediatonnections).Only a randomlyselected25% of
thepossibleconnectionsn eachof thesesetswereinitially includedin the network.

word correctly strongly dependson its part-of-speect{nouns> adjectves> verbs> function
words)andits concretenessr imageability(concretehighly imageablevords> abstract|essim-
ageablewnords). Strangelythe effectsof concreteness—semanticvariable—interactvith visual
similarity in errors,suchthatabstractvordsaremorelik ely thanconcretevordsto producevisual
errors,andtheresultingresponsegendto be moreconcretethanthe stimulus(e.g.,SCANDAL =
“sandals”). Of theseeffects, the derivationalerrorsand part-of-speecleffects may be secondary
to other characteristic§Fun87], but any accountof the disorderneedsto explain all the other
apparentlyindependensymptoms.

1.2 A Preliminary Connectionist M odel

HintonandShallice[HS91] (hereafteH&S) putforwardaconnectionisaccounobf why semantic,
visualandmixedvisual-and-semantierrorsco-occurwhenthe procesghatdervesthe meanings
of wordsis damagedBasedon previouswork by HintonandSejnavski with BoltzmannMachines
[HS86], they traineda recurrentback-propagatiometwork to map from the written form (i.e.,
orthography)of 40 three-or four-letter wordsto a simplified representatiorf their semantics,
describedn termsof 68 predeterminedemantideatures.The architectureof the network, shavn
in Figure 1, consistsof two pathways: a direct pathway, from graphemeunits to sememainits
via intermediateunits, that generatesnitial semanticactvity; anda clean-uppathway, from the
sememe$o clean-upunitsandbackto the sememesghatiteratively refinesthesenitial semantics
into the exact semanticf the presentedvord. Thus,in solving the task, the network learnsto
make the patternof semantideaturedor eachword into anattractor in the 68-dimensionaspace
of possiblesemanticrepresentationsAfter training, H&S systematicallylesionedthe network
by removing proportionsof units or connectionspr by addingnoiseto the weights,and found
that the damagedhetwork occasionallysettledinto a patternof semanticactvity that satisfied
responseriteriafor a word otherthanthe onepresentedTheseerrorresponsesveremoreoften
semanticallysimilar to the stimulus(i.e., from the samecategory) and/orvisually similar to the
stimulus (i.e., overlappedin at leastone letter) thanwould be expectedby chance. While the
network shoved a greatertendeng to producevisual errorswith damageneartheinputlayerand
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Figure2: How semantiadamagecancausevisualerrors.The solid ovalsdepictthe normalbasins
of attractionjthe dottedonedepictsa basinafterdamage.

semantierrorswith damagenearthe outputlayer, bothtypesof erroroccurredfor almostall sites
of damage.

The occurrenceof semanticerrorsin the modelis straightforvardto explain. Damageto the
directpathway corruptstheinitial semantiactiity causedy aword. If thiscorruptedoatternnow
happengo fall within the basinof a neighboringattractor the operationof the clean-uppathway
would causethe network to settleinto the semanticf a relatedword. Similarly, damageo the
clean-uppathway altersthe layoutof the basinsthemseles,suchthatthe normalinitial semantic
patterngeneratedby a word mightfall within aneighboringattractor

Damageo thedirectpathway would alsobe expectedto leadto visual errors,sincethis path-
way mustrely on visual distinctionsamongwordsto generatanitial semanticactvity thatfalls
within the appropriateattractorbasin. Whatis lessobvious, bothin patientsandin the network,
is why damagewithin semanticshouldleadto visual errors. H&S provide an accountin terms
of the natureof the attractorsthat develop in mappingbetweentwo arbitrarily relateddomains.
Connectionishetworkshave difficulty learningto producequite differentoutputsfrom very simi-
lar inputs,andyet, often, visually similar wordshave unrelatedneaningge.g.,CAT andcoT). In
an attractornetwork, visually similar words are free to generatesimilar initial semanticpatterns
aslong asthesepatternseachfall somavherewithin the correctbasinsof attraction.As aresult,
in this region of semanticspaceneighboringattractorscorrespondo visually similar words(see
Figure2). Semantiadamagedistortsthesebasinspccasionallycausinghe normalinitial semantic
patternof awordto be capturedwithin the basinof avisually similar word. Essentiallythelayout
of attractorbasinanustbe sensitve to bothvisualandsemanticsimilarity, andsothesemetricsare
reflectedn thetypesof errorsthatoccurasaresultof damage.

H&S’s simulationprovidesa unified accountof the natureandco-occurrencef semanticyi-
sual,andmixedvisual-and-semantierrorsin deepdyslexia. By contrastmostprevious explana-
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tions(e.g.,[MP80]) have hadto resortto proposingseparateindependenlesions—ongroducing
semanticerrorsandthe otherproducingvisualerrors. Thus,theseaccountgprovide no principled
explanationof why virtually all patientswho make semanticerrorsalsomake visual errors(i.e.,
why patientswho have onelesionalmostalwayshave the other). H&S demonstratethatthis co-
occurrencef errortypesis a naturalconsequencef the effectsof singlelesionsin a network that
mapsbetweenvisualandsemantiaepresentationsf words.

Although encouragingH&S’s work is limited in two importantways. The first is that only
a few of the mary characteristicof deepdyslexic patientswere simulated. To constitutean
adequateaccountof thesepatients,the approachwould have to be extendedto encompasshe
remainingmajor characteristicaswell—particularly the othererrortypesandthe effectsof con-
creteness/imageabilityrhe secondimitation is that, althoughH&S attribute their resultsto gen-
eral propertiesof distributed representationand attractors they investigatedonly a single type
of network that inevitably had mary specificfeatures. They implicitly assumedhat thesespe-
cific featuredid not significantlycontributeto the overall behavior of the network underdamage.
Clearly it would be impossibleto evaluateand improve on every aspectof the H&S model. In
thefollowing sectionseachof the majordesigndecisionghatwentinto developingthe modelare
systematicallyexplored: the definition of the task of readingvia meaning,the specificationof a
network architecturethe useof a particulartraining procedure andthe applicationof a testing
procedurefor evaluatingthe network’s behaior underdamage.The first issuewe addresss the
testingproceduresinceits resultsareusedin latersections.

2 TheTesting Procedure

Most dataon deepdyslexic readingcomesfrom tasksin which the patientproducesa verbalre-
sponsdo avisually presentedvord. Sincethe outputof the H&S modelto a letter string consists
of a patternof semanticactvity, someexternal procedureis neededo corvert this patterninto
an explicit responsesothatit canbe comparedwith the oral readingresponsesf deepdyslexic
patients.The procedureH&S usedcompareshe semanticactivity producedby the network with
thecorrectsemantic®f all known words,selectingheclosest-matching/ord aslongasthematch
is sufficiently good(the proximity criterion) andsuficiently betterthanary othermatch(the gap
criterion). The rationalefor thesecriteriais that semanticactvity thatis too unfamiliar or am-
biguouswould be unableto drive anoutputsystemeffectively. In thisway H&S’s useof response
criteriadiffers from approacheshat simply take the best-matchindgnown outputasthe response
regardlesof the quality of thematch(e.g.,[PSM90,SR87]).

However, theseresponseriteriawereinadequatelynotivatedandwereonly indirectly verified
asappropriate.In particular while it may be reasonablé¢hat semanticsvhich failed the criteria
couldnotdrive anoutputsystemno evidencewasgiventhatsemanticsvhich satisfiedhecriteria
could succeedn generatinga response.Furthermore the criteria are insensitve to the relatve
semanticandphonologicaldiscriminability of wordsandso may be inadwertentlybiasedtowards
producingcertaineffects. Finally, abest-matciproceduras aratherpowerful operationyequiring
considerabl&nowledgeaboutthe wordson which network hasbeentrained. If too muchof the
difficulty of a problemis solved by the assumednechanismdor generatingthe input or inter-
pretingthe output, therole of the network itself becomedessinteresting[LB88, PP88]. This is
especiallyironic asa best-matcHcateyorization)processs exactly the sortof operationat which
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connectionishetworksaresupposedo excel [HA81, Hop83.

Thus, it would be a significantadvanceover the useof responseriteriato extendthe H&S
modelto derive anexplicit phonologicalresponsen the basisof semanticactvity. However, it
turnsout thatdevelopingsucha network involvesovercomingdifficultieswhich arefairly general
to connectionishetworksandhave arisenin a numberof contexts (e.g.,[NM91, RM86, SM89]).
In the presendomain,the problemis thatthe damagedetwork producegphonologicakesponses
which areinappropriateé'blends” of the pronunciationsof known words. In this section,we il-
lustratethis problemanddemonstrat@a methodfor overcomingit, allowing usto replicateH&S’s
resultsusingnetworksthatmapfrom orthographyto phonologyvia semantics.

2.1 Phonological blends

Theproblemghatoccurin implementinganeffective outputsystemarebestillustratedby describ-
ing what happensvhenthe moststraightforvard procedures used. Specifically we develop an
outputnetwork analogoudo the input network, but which takesasinput the semantiaepresen-
tation of a word and producesa phonologicalrepresentatiomf the word. This network is then
combinedwith aninput network thatmapsfrom orthographyto semanticgessentiallyidenticalto
theH&S model),resultingin amuchlargernetwork thatmapsfrom orthographyto phonologyvia
semantics.

The input to the network consistsof the 40 semantiaepresentationthat sened asoutputin
theH&S model.A phonologicabutputrepresentatiomasdefinedin termsof 33 position-specific
phonemaunits (see[PS93]for details).For eachword, exactly oneunit in eachof threepositions
is active, possiblyincluding a unit in the third positionthat explicitly representshe absenceof
a third phoneme.This representatiomllows the units that representlternatve phonemesn the
samepositionto competan a“winner-take-all” fashion.

In orderto minimize the numberof independenassumptionsn the completenetwork, the
architectureof the outputnetwork wasdesignedo be assimilar aspossibleto that of the H&S
inputnetwork. Thesememéinput) unitswereconnectedo agroupof 40intermediateunits,which
werein turn connectedo the 33 phonemaunits. A groupof 60 clean-upunitswereinterconnected
with the phonemaeunits. As in the original H&S network, only a randomfourth of the possible
connectionsn eachof thesepathwayswasincluded.In addition,thecompetingphonemaeunitsfor
eachpositionwerefully interconnectedTheresultingnetwork hadatotal of 2410connections.

Theoutputnetwork wastrainedin exactly thesamemannerastheH&S network, using“back-
propagatiorthroughtime” [RHW86, WP9({. After about1500sweepghroughthe setof words,
the network successfullyactvatedeachphonemeunit to within 0.1 of its correctstatefor each
word over thelastthreeof eightiterations.This outputnetwork wasthencombinedwith aninput
network, identicalto the one H&S used,that had beensimilarly trainedto generatesemantics
from graphemicinput. The sememeunits of the input network replacedthe input units of the
outputnetwork. Theresultingnetwork, shavn in Figure3, hadatotal of 6110connections.This
combinednetwork wastrainedfurtherby fixing the weightsof the input network andrunningthe
entirenetwork for 14iterationsoneachinput, allowing theoutputnetwork to adapt.Thisadditional
training was requiredto ensurethat the outputnetwork operatedcorrectly whenreceving input
from the input network (which neednot be correctuntil iteration 6) insteadof being clamped
throughoutits operation. Fixing the weightsof the input network ensuredthat it continuedto
generatdhe correctsemanticof eachword. After anadditional34 sweepshroughthe training
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Figure3: Thearchitectureof a network thatmapsfrom orthographyto phonologyvia semantics.
Notice thatthe namesof setsof connectionsnvolving the intermediateandclean-upunitsin the
phonologicabutputnetwork aresubscriptedvith ap to differentiatethemfrom the corresponding
setsof connectionsn theinput network.

set,the combinednetwork succeededh producingthe correctphonemef eachword givenits
graphemesasinput.

Becausalamagewill impair the ability of the network to derive the correctpronunciationf
words,we needsomeway of decidingwhethercorruptedphonologicalactiity constitutesa well-
formedpronunciation Givenour phonologicakepresentatiora naturalcriterionis to requirethat
exactly onephonemaunit be active in eachof the threepositionsin orderto producearesponse.
Sinceunits have real-valuedoutputswhich arerarely O or 1, we needa more precisedefinition
of “active” and“inactive’ The criterionwe useis thatthe mostactive phonemeat eachposition
is includedin the responsef its likelihood, relative to the competingphonemest that position,
exceedsa phonolaical responsecriterion of 0.61 If, at eachposition, exactly one phoneme
satisfieghis criterion,the concatenationf thesegphonemess producedastheresponsegtherwise,
the phonologicakctvity is consideredll-formed andthe network fails to respondlt is important
to point out thatthis type of criterionis quite differentfrom the H&S criteria, which ensurethat
an outputis semanticallyfamiliar (i.e., nearthe meaningof a known word). The criterion we
employ doesnotrely onany knowledgeof the particularwordsthe network hasbeentrainedon—
it consideronly theform of the outputrepresentation.

Eachof the four main setsof connectionsn the input network wassubjectedo “lesions” by

IMore formally, if y; is the outputof phonemeunit i, anddi is its smallestdifferencefrom 0 or 1 (i.e., d; = y; if
yi <0.5and1-y; otherwise)thenthenetwork producesaresponse, for every positionp, []icpdi > 0.6 andexactly
oney; > 0.5. The productis the probability of the mostlik ely binary outputvectorat the positionwhenthe statesof
the phonemaunitsareinterpretedasindependenprobabilities. Thus,the responserocedurés closelyrelatedto the
maximum-likelihoodinterpretatiorof the cross-entrop errorfunction usedto train the network [Hin893.
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choosingat randomand remaoving a proportionof the connections.A wide rangeof severities
were investigated:0.05, 0.1, 0.15,0.2, 0.25,0.3, 0.4, 0.5, and 0.7. Twenty instancesf each
locationandseverity of lesionwere carriedout, and correct,omission,anderrorresponsesvere
accumulatedaccordingto the above procedure. An error responsevas categorizedas visually
similarif it sharedatleastoneletterin thesamepositionwith the stimulus,andwascateyorizedas
semanticallysimilarif it belongedo the samesemanticategory asthe stimulus? In addition,the
natureof theoutputrepresentatioandcriterioncreates new typeof “blend” errorconsistingof a
literal paraphasia—ahonologicallyreasonabl®utputthatdoesnot correspondo a word known
to the network. Thus,eacherrorresponsg@roducedoy the damagedetwork canbe classifiedas
visual,visual-and-semantisemanticplend,or other (unrelated).

Figure4 presentsheaverageratesof eacherrortypefor eachlesionlocation. Themoststriking
aspecbf theresultsis the high rateof blends.Theseerrorsstandin sharpcontrasto the behavior
of deepdyslexics, who very rarely producenonword responses oral reading(see[CPM80, Ap-
pendix2]). Table2.2 presentsometypical examplesof blenderrorsproducedy the network un-
dervariouslesions.The semantiactvity producedoy eachinputis characterizetby its proximity
(i.e.,normalizeddot-product)vith the semantic®f thetwo nearesknown words. It is informatve
to comparehe phonologyof thesewordswith theresponsef the network. Semantiactuvity that
is neartwo wordsoften producesa phonologicaloutputthatis a mixture of the words’ phonemes
(e.g.,PIG (+RAM) =/ p a g/ ), which is why theseerrorsarecalled“blends’ Occasionallynew
phonemesareintroducedunderthe pressureof mixed semanticge.g.,DOG (+CAT) = /| a g/).
Interestingly semanticghat would easily satisfy H&S’s criteria for a correctresponsenay still
be sufiiciently corruptedfor the output systemto producea blend (e.g., HOCK (prox 0.88, gap
0.12) = / h u k/). Ontheotherhand,semanticghatarequitefar from arny known word may still
producearesponsealbeitincorrect(e.g.,RUM (prox0.66) = / h awn ). Clearlythecurrentoutput
systembehaesquitedifferentlyfrom whatthe H&S criteriaassumebouta responseystem.

2.2 An Explanation for Blends

In attemptingto understandvhy blendsoccur it is importantto keepin mind thatany patternof
activity thatthenetwork settlegnto is anattractorthathasdevelopedn thecourseof training. 3 We
know thatthe network developsappropriateattractorsfor the 40 wordssinceit producescorrect
responsesvhen presentedvith their semantics.However, in the courseof training the network
developsother spuriousattractors. Theseattractorstendto be patternsthat are combinationsof
trainedpatterndecausewhenthephonologyof awordis trainedasaresponseptherphonological
patternsarealsoreinforcedto the extentthatthey overlapwith thetrainedpattern.The existence
of spuriousattractorgs awell-known propertyof associatie networks[Hop82 andis oneway of
characterizingheir limited storagecapacity The existenceof theseadditionalattractorsis not a
problemduringnormaloperatiorbecaus@nputsthatwould settleinto themarenever presentedin
fact,they arenot a problemfor ary testof generalizationinvolving novel input thatis sufficiently
similar to familiar input (i.e., nearin featurespaceor dravn from the samedistribution) so asto

2In additionto visualandsemanticsimilarity, errorscannow be phonologicallysimilar—thatis, have overlapping
phonemesSincevisual and phonologicalsimilarity arehighly correlatedfor the presentpurposesve will consider
sucherrorsto bevisual—sedPS93]for moredetaileddiscussion.

3Actually, it would bemoreaccurateo saythattraininghasproducedhe potentialfor this patternto beanattractor
givensomeinput.
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Figure4: Error ratesproducedby lesionsto eachmain setof connectionsn the input network.
“Chance”is the distribution of errortypesif responsesverechoserrandomlyfrom theword set.
Its absoluteheightis setarbitrarily—only the relative ratesareinformative. Resultsareaveraged
over lesiondensitiesvhich producedanoverall correctresponseatebetweerapproximately20%
and80%. The numberof lesionseveritiesincludedin the calculationof errorratesis indicatedin
parentheselelon thelabelfor eachlesionlocation.
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Tablel: Examplesof nonword “blend” errorsproducedy the network.

Nearest Semantics
Input Response Word Best prox Next prox Lesion
RIB [rudl MUD RIB 0.79 Gcut 0.65 G=1(0.15)
poGc [/l agl/ LOG poc 0.88* cAaT 0.79 G=1(0.20)
PIG Ipagl PIG PIG 0.86 RAM 0.82 G=1I(0.25)
LIP Irabl RAM RIB 0.71 vLIP 0.67 G=1(0.50)
HOCK [huk/ HOCK  Hock 0.88* RuM 0.76 I=-5(0.05)
RUM /hawm  HAM HAM 0.66 PORK 0.63 I=5(0.25)
cup [kagl CAN cup 0.78 caAN 0.76 I=-15(0.40)
RAT [/rag/ RAM RAT  0.97* bpoGc 0.73 C=5(0.05)
HAM [hun RUM BUN 0.77 HAM 0.73 C=5(0.25)
LEG [/pogl LOG pop 0.70 LEG 0.64 C=5(0.50)
CAN [kun/ CAN CAN  0.96* muG 0.80 s=-(0.15)
DUNE /dyon/ DUNE TOR 0.81 DUNE 0.81 s=-(0.20)
cow [kug/ MUG cow 0.90* PG 0.80 s5=-¢(0.70)
Note “NearestWord” is the word whosephonologicalrepresentatioimas
the closestproximity to the phonologicaloutputof the network. “Seman-
tics” liststhe bestandnext-bestwordswhosesemantiadepresentationsave
theclosesproximity proxto thesemantiactiity producedyy the network.
Semanticghat satisfythe Hinton & Shalliceresponseriteria are marked
with anasterisk.

fall into the sameattractorbasins.However, damageo theinput network oftengeneratesemantic
activity which is quite unlike ary of the inputs on which the output network hasbeentrained.
Whenthis semanticactvity consistsof a mixture of the semantideaturesof two words(e.g.,PIG

andrAM), ratherthanfall into the attractorfor oneor the otherof thesewords(eitherproducinga
correctresponser a corventionalerror) the network occasionallysettlesinto a spuriousattractor
for acombinationof the phoneme®f thetwo words(e.g.,/ p a g/ ), resultingin ablend.

Viewed anotherway, blendsarethe resultof the naturaltendeng of connectionisinetworks
to give similar outputsto similar inputs. This propertyis one of the major attractionsof these
networks becauset enableshemto generalizeappropriatelyin mary taskswhenpresentedvith
novel input which is similar to trainedinput. However, what constitutesan appropriategeneral-
izationdepend®n thetask. ConsiderSeidenbey andMcClelland’s modelof word pronunciation
[SM89], which mapsfrom the orthographyto the phonologyof single-syllablevords. The model
generalizego pronouncenonwords by combiningthe commonpronunciationf subsetf its
letters, producinga phonologicaloutputthatis differentfrom that of any known word. Thus,in
thistaskablendatthelevel of phonemess thecorrectrespons@o anovel input, andlexicalization
(i.e., producingthe exact pronunciatiorof a similar word) would be inappropriateIn fact,oneof
theproblemswith theSeidenbeg & McClellandmodelis that,in responséo anonword,themodel
occasionallyproducesninappropriatélendat thelevel of phonemideatures For example when
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presentedvith theletterstring vosT the network producesa blendof thevowel pronunciation®f

LOST and POST ratherthanchoosingoneor the other(J. McClelland, personatommunication}:

Thus, the problemof blendsoccurswhena network is not suficiently constrainedat the appro-
priatelevel of structurein the output: for the Seidenbeg & McClellandtaskthis is the phonemic
level; for ourtaskit is thelexical level (seealso[RM86, SR87]).

2.3 Eliminating Blends

Onewayto eliminateblendswould beto presenthenetwork with all possiblepatternof semantic
activity andexplicitly train it to produceno responsexceptto thosepatternsthat correspondo
known words. Sucha procedures unacceptabléor both empiricaland computationareasons:
it involves presentinghe network with far more informationthanis availableto readersandit
would beintractableto train the network on a large fraction of the exponentialihnumberof possible
semanticgpatterns.A betterapproachs to presentonly known words, but alter the training pro-
cedurein sucha way thatthe network developsmuchlarger andstrongerbasinsof attractionfor
thesewords? In this way, initial phonologicalpatternghatarea mixture of the phoneme®f two
wordswill bemuchmorelik ely to fall into theattractorof oneor theotherof thewords,ratherthan
into a spuriousattractorfor a blend. Developingstrongattractorgor known wordsis equivalentto
having a strong“lexical bias”in theresponsesf the network.

In theoriginalarchitecturavith 25%connectvity density the probabilitythatany clean-upunit
would receve connectiondrom threeparticularphonemesor receve connectiongrom two and
sendto athird, is only 0.25° = 0.016. Henceit is unlikely thatindividual clean-upunits caneffec-
tively bind togetherthe phoneme®f eachword—thesaunits mustwork togetherto appropriately
constrainthe phonemaunits. To allow clean-upunitsto moredirectly constraincombinationsof
phonemesa slightly differentarchitecturewill be usedfrom the previous one.Ratherthanuse60
clean-upunitswhich areeachinterconnectedavith arandomfourth of the phonemaeunits, only 20
clean-upunitswill be used,but thesewill befully interconnecteavith all of the phonemeunits.
Theresultingnetwork hasonly about330 more connections.Notice that, with only 20 clean-up
units, the network cannotdevote a single unit to eachword. Nonethelesseachof theseunits can
have amorepowerful influenceon phonologicakctvity thancouldless-denselgonnectedinits.

Ourtrainingstratgy will beto developeachoutputnetwork incrementally First,thephoneme
andclean-upunits will be trainedon noisy versionsof the pronunciationsof wordsin orderto
developstrongattractordor thesepatternsjndependenof ary input from semanticsThis phono-
logicalclean-uppathwaywill thenbefixed,andadirectpathwayfrom semantic$o phonologywill

4In general the modeloften produceshonword pronunciationghatdiffer from what normalsubjectswould con-
siderthe correctpronunciation[BTMS90], but see[SM90]), suggestindghatit hasnot sufficiently learnedthe appro-
priateregularitiesboth betweerandwithin the phoneme®f word pronunciations.

5The relationshipbetweenthe strengthof an attractorandthe size of its basinof attractionis somevhat subtle.
Givenunlimitedsettlingtimein anundamagedetwork, attractorswith largerbasinsarestrongetin thesensehatthey
pull moredistantpatterngo them. However, attractorswith “deeper”basing(i.e., thoserepresentingctivity patterns
that bettersatisfy the constraintamposedby the input and weights)are more robust with limited settlingtime (as
in our networks) or underdamageandarein this sensestrongerthanattractorswith larger, moreshallav basins.A
latersectiondescribesimulationausingcontrastve Hebbianlearningin adeterministidBoltzmannMachine,in which
strongattractorsdevelopnaturallysothatno specifictrainingtechniquesrerequiredo eliminatephonologicablends
underdamage.
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be trained,first separatelythenwith the phonologicalclean-upadded,andfinally with its input
generatedby theinput network.

This training procedurealiffersfrom the standardapproachn two mainways: the useof noisy
inputandincrementatraining. In generatingqioisyinputfor anexample,theactvity of eachinput
unit will be movedfrom 0.0or 1.0 towards0.5 by the absolutevalue of arandomnumberdravn
from a gaussiardistribution with mean0.0 and fixed standarddeviation. The target statesfor
the outputunitsareunchangedTraining on noisy input amountgo enforcinga particularkind of
generalizationinputswhicharenearknown patternsnustgive identicalresponsesThusthebasin
of attractionfor eachtrainedpatternmustbe at leastlarge enoughto includethe patternghatcan
begeneratedrom it with theamountof noiseusedduringtraining. An additionaleffect of training
onnoisyinputis thatthereis apressurdor weightsto remainsmallsothattheeffectof thenoiseon
therestof the network is minimized. This influence,muchlike “weight decay”[Hin894, causes
the knowledgeof the taskto be moreevenly distributedacrossall of the connectionsmakingthe
network moreuniformly robustto lesions[FM91].

Incrementatraining hastwo mainadvantagesFirst, it reduceshe computationaiemandof
training, sincethetime to train a connectionishetwork with back-propagatioscalesnuchworse
thanlinearly in the size of the network [PH87]. Second,and moreimportantfor our purposes,
training partsof the network separatelyencouragegachpartto accomplishas muchof the task
as possible,without relying on the strengthsof the other parts. Specifically whentraining the
completenetwork, if the direct pathway cangenerateeasonablghonologyfrom even noisy se-
mantics,thereis lesspressureon the phonologicalclean-uppathway to develop strongattractors
for the correctpatterns. Training them separatelyforcesthemeachto compensatéor the noise
independentlgothattheir combinationis morerobust.

The phonologicalclean-uppathway of the outputnetwork wastrainedto producethe correct
phonemesf eachword duringthelastthreeof six iterationswhenpresenteavith thesephonemes
corruptedby gaussiamoisewith a standarddeviation of 0.25. Becausehe phonemeunits are
both the input and outputunits for this stageof training, the phonemes<annotbe presentedy
clampingthe statesof theseunits. Rather theseunitsweregivenanexternalinput throughouthe
six iterationswhich, in the absenc®f otherinputs,would producethe specifiedcorruptedactiity
level. This techniqueis known as soft clamping The direct pathway was trainedto produce
the phonemef eachword from the semanticof eachword, corruptedby gaussiamoisewith
standarddeviation 0.1. The input units were clampedin the normalway. Eachpathway was
trainedto activatethe phonemeunitsto within 0.2 of their correctvaluesfor a giveninput. After
very extensve training they accomplishedhis in general,but the amountof noiseaddedto their
inputsmadeit impossibleto guarante¢his performancenary giventrial. For thisreasontraining
was haltedwhen eachpathway met the stoppingcriteria over ten successie sweepshroughthe
training set.

The separatelytrainedclean-upanddirect pathwayswerethencombinedinto a single,com-
pleteoutputnetwork. Thisis straightforvardbecausehetwo pathwayshave non-overlappingsets
of connectionsexceptfor the biasef the phonemaunits. For thesethe biasedrom theclean-up
pathway wereused.The network wasthengivenadditionaltraining on noisy input, duringwhich
only the weightsin the direct pathway were allowed to change. In this way the direct pathway
adjustedts mappingto moreeffectively usethefixed phonologicaklean-upin generatingorrect
word pronunciations.

Finally, the outputnetwork wasattachedo thereplicationof the H&S input network andgiven
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Figure5: Error distributionsfor the extendedback-propagationetwork.

afinal tuningto ensurdhatthe outputnetwork operatecppropriatelywhenits inputwasgenerated
overtime by anactualinput network, ratherthanbeingclamped.Theweightsof theinput network
werenot allowedto change sothatthey continuedto derive the correctsemanticgor eachword.
After thisfinal training,which took 42 additionaltraining sweepsthe extendednetwork correctly
dervedthe semanticandphonologyof eachword from its orthography

Usingthesameandomnumbergeneratoseedstheinputportionof theextendedhetwork was
subjectedo theidenticallesionsaswereappliedto the original network. Additional lesionswere
appliedto thesemantiaunitsthemseles,andto eachsetof connectionsn the outputnetwork. For
eachlesion, correct,omission,anderror responsesvere accumulatedand errorswere classified
accordingto their visual and semanticsimilarity to the stimulus. Figure5 shavs the distribution
of error ratesfor all lesionsof the extendednetwork. Comparingwith the resultsfor the first
extendednetwork (seeFigure4), lesionsto the input network still producedistributionsof visual,
semanticand mixed visual-and-semantierrors,aswell asother (unrelated)errors,but the rates
of blenderrorshave beendramaticallyreducedby the training strateyy. Notice thatoneresultof
thestrongemphonologicahttractordor word pronunciationss thattherelative ratesof othererrors
have increasedWhena lesionresultsin initial phonologicalactvity thatis highly corruptedthe
new outputsystemmaystill succeedn cleaningit upinto afamiliarresponsegvenin caseswhere
it bearsnorelationto the correctresponse.

Interestingly a numberof the other errorsareactuallyof the visual-then-semantitype found
in deepdyslexia (e.g.BOG = (dog) = “rat”). Thistype of erroroccurswhena lesionresultsin
a semanticepresentatiorcloseto that of a word visually relatedto the stimulus,which is then
mappedoy the outputsystemonto the phonologyof a semantianeighborof this visually related
word. Thus,it is the normal operationof the outputsystemthat produceshe semantigartof the
visual-then-semantierror.

Lesionsto thedirect pathway of the outputnetwork (S=Ip andIp=-P) produceerrorpatterns
muchlik e inputlesions,althoughthereis aslightly greatemiastowardssemanticerrorsrelatve to
visual errors.However, moststriking is the extremelylow errorratefor lesionswithin the phono-
logical clean-uppathway (P=-Cp andCp=-P). Although mary wordscanstill be readcorrectly
with impairedclean-up—aeragecorrectperformanceftertheseesionsis 50.3%—itis very rare
that phonologywill be cleanedup into the pronunciationof anotherword. This resultprovides
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directsupportfor H&S’s claim thatattractorsarecritical for producingerrorresponses.

Oneissueis whetherthe patternof errorscould have arisenby chance—thats, if errorre-
sponsesvererelatedto stimuli only randomly If the distribution of errortypesfor a givenlesion
locationoccurredby chancetheratiosof their rateswith therateof other errorswould approxi-
matethe correspondingatiosfor the“Chance”errordistribution. However, exceptfor phonologi-
calclean-upgesionstheratesof visual, mixedvisual-and-semantigndsemanticerrors relatve to
theratesof othererrors,aregreaterfor all lesionlocationsthanpredictedoy chance Specifically
the ratioswith other error are larger thanthe chancevalue by at leasta factor of 3.3 for visual
errors,11.7 for visual-and-semantierrors,and 2.9 for semanticerrors. Thus, lesionsanywhere
alonga pathway from orthographyto phonologyvia semanticproducequalitatvely similar pat-
ternsof errors. In this way, H&S’s resultsappearto generalizeo lesionsall alonga routefrom
orthographyto phonologyvia semantics.

3 TheNetwork Architecture

The seconddesigndecisionwe will consideris the relevanceof network architecturepy which
we meana specificationof the numberof units andtheir interconnectrity. H&S provide only a
generaljustificationfor the network architecturéghey chose.Hiddenunitsareneededecauséhe
problemof mappingorthographyto semanticss not linearly separable.Recurrentconnections
arerequiredto allow the network to develop semanticattractorswhoseexistenceconstituteshe
major theoreticalclaim of the work. The choicesof numbersof intermediateand clean-upunits,
restrictionson connectionsamongsememeunits, and connectvity densitywere an attemptto
give the network sufiicient flexibility to solve thetaskandbuild strongsemanticattractorswhile
keepingthe sizeof the network manageableSomeaspect®f thedesign particularlythe selectve
useof intra-sememeonnectionsyereratherinelegantandadhoc.

Accordingly, we carriedout a systematiacomparisorof the effects of damagean a rangeof
network architectureslesignedo allow comparisondetweenbasicaspectof the H&S network
(seeFigure6). Versionsof eachof thesenetworksweresubjectedo full rangeof lesionlocations
and severities, and evaluatedboth using the responsecriteria and using an output system. The
resultsdemonstratehat the qualitatve error patternafter damageis surprisinglyinsensitve to
architecturaldetails, aslong as attractorscontinueto operatedownstreamfrom the lesion (see
[PS93 for details).Whenlesionsareator beyondthelevel atwhich attractoroperatethe network
produceweryfew explicit errorresponsesventhoughcorrectperformancenaybereasonableln
thisway, theresultsin theseconditionsmirror thoseshown for lesionsof thephonologicatlean-up
pathway just describedseeFigure5). More critically for the presentpurposeshowever, is that
the similarity of error patternsproducedby sucha wide variety of architecturegnalkesit highly
unlikely thatthe basicresultsdependon ary idiosyncraticcharacteristicef the H&S network.

4 TheTraining Procedure

Although back-propagatiois quite a powerful training procedurejt usesinformationin ways
that seemneurophysiologicallymplausible—astraightforvard implementatiorof the procedure
would requireerror signalsto travel backward throughsynapsesnd axons[Cri89, Gro87. As
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such,it seemsunlikely thatback-propagatioperseis whatunderlieshumanlearning,andthusits
usein modelingtheresultsof humanlearningis somevhatsuspect.

Proponent®f the useof back-propagatiom cognitve modelinghave repliedto this agument
in two ways. Thefirst is to demonstratéow the proceduremight beimplementedn a neurophys-
iologically plausibleway. The morecommonreply, andthe oneadoptedby H&S, is to arguethat
back-propagatiors only oneof a numberof proceduregor performinggradientdescentearning
in connectionisnetworks. As such,it is viewed merely asa programmingtechniquefor devel-
oping a network thatperformsa task,andis not intendedto reflectary aspeciof humanlearning
perse. Theimplicit claim is thatback-propagatiodevelopsrepresentationthatexhibit the same
propertiesaswould thosedevelopedby a moreplausibleprocedurebut thatit doessomuchmore
efficiently. However, this claimis rarelysubstantiatetly ademonstratiomf the similarity between
systemslevelopedwith alternatve procedure$.

In this section,we replicatethe main resultsobtainedthusfar with back-propagationyithin
the moreplausiblelearningframavork of contrastve Hebbianlearning(CHL) in a deterministic
BoltzmannMachine(DBM) [PA87, Hin89l. In thisframevork, weightsarechangedn proportion
to thedifferencein the productof unit statesaftersettlingwith bothinputsandoutputsareclamped
(the positive phase),and when settling after only the inputs are clamped(the negative phase).
CHL is somavhat more biologically plausiblethan back-propagatiothecausenformation about
the correctstatesof outputunitsis usedin the sameway asinformation aboutthe input—that
is, by propagatingveightedunit actwvities, ratherthan passingerror dervativesbackward across
connectionsWe alsodevelop a closely-relatedgstochasticGRAIN network [McC90, McC91]] and
compardt with thedeterministicone.

4.1 Deterministic Boltzmann Machine

Figure7 depictsthe architectureof the DBM for mappingamongthe orthographysemanticsand
phonology All setsof connectionsrebidirectionalandhave full connectvity, exceptthatno unit
is connectedo itself. In total, the network has11,273connections—aboutvice the numberof
connectionsn oneof theback-propagationetworks. This extra capacityis justifiedbecaus€HL
is not asefficient asback-propagatiom usinga smallnumberof weightsto solve atask.

In orderto helptheDBM learnthestructuren thetask(i.e.,to reproduceheco-occurrencesf
unit states)the network wastrainedon threesubtaskseachcorrespondingo a separateegative
phase: (1) generatesemanticsand phonologyfrom orthography (2) generateorthographyand
phonologyfrom semanticsand(3) generatsemanticandorthographyrom phonology Although
only the first subtaskis strictly requiredfor readingvia meaning,training on the other subtasks
ensureghatthe network learnsto modelorthographicstructureandits relationshipto semantics
in the sameway asfor phonologicalstructure’ Also, learningthe taskin both directionsshould
resultin strongerandmorerobustattractors.The positive phasanvolved clampingthe grapheme,

Terry Sejnavski (personalcommunication)has successfullyre-implementedNETtalk [SR87 as a stochastic
BoltzmannMachine. However, he made no direct comparisonf the representationshat the two procedures
developed.

’Our useof a training procedurehatinvolveslearningto producesemanticsrom phonologyin additionto pro-
ducingphonologyfrom semanticss in no way intendedto imply a theoreticalklaim thatinput andoutputphonology
areidentical—itis solely a way of helpingthe network to learnthe appropriaterelationshipsetweensemanticand
phonologicarepresentations.
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Figure7: The DBM architecturdor mappingamongorthographysemanticsandphonology

sememeandphonemaunitsappropriatelyandcomputingstatedor thetwo layersof intermediate
units. In orderto balancehethreenegative phasesthe productsof unit statesn thepositive phase
aremultiplied by threebeforebeingaddedinto the pendingweight changes After slightly more
than 2100 sweepghroughthe word set, the stateof eachgraphemesememeand phonemeunit
waswithin 0.2 of its correctstatesduring eachof thethreenegative phases.

After training, eachof the setsof connectionsn the DBM weresubjectedo 20 instancesof
lesionsover the standardangeof severity. We alsosubjectedhe semantiaunitsto lesionsof the
sameaangeof severity, in whichtheappropriatgroportionof semantianitsareselectecgtrandom
andremoved from the network. Sincewe are primarily concernedwith the task of generating
semanticandphonologyfrom orthographywe only consideredehaior in the neggative phasen
whichthegraphemeinitsareclamped.For eachlesion,correct,omissionanderrorresponsavere
accumulatedccordingto the samecriteriaasusedfor the back-propagationetworks.

An interestingcharacteristiof the DBM is thatit tendsto settleinto unit stateshatarevery
closeto +1, evenunderdamage This resultsin very cleanphonologicalbutputwhenit responds.
Only 9.2% of omissionsfail becauseof the criterion of a minimum slot responsegrobability of
0.6 for responses.Thus, the phonologicaloutputcriterion could be eliminatedentirely without
substantiallyalteringthe resultswith the DBM.

Figure8 presentshedistributionof errortypesfor eachlesionlocationof theDBM. Comparing
with resultsfor input lesionsto the back-propagatiometwork (shavn in Figure5), the DBM is
producingabout4-8 times higher error rates. However, the distribution of error typesis quite
similar for the two networks. Both shawv a high proportionof visual errorsfor lesionsto input
pathways. Furthermore]ike the back-propagatiometwork, the DBM shaws very low ratesof
blendresponsesThis is interestingbecauseunlike in the developmentof the back-propagation
outputnetwork, no specialeffort wasmadeto preventblendsin thedesignor training of the DBM.
Their absencappeardo be a naturalandencouragingonsequencef the natureof the attractors
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Figure8: Error ratesproducedby lesionsto eachmain setof connectionsaswell asto the se-
manticunits,in the DBM. Resultsareaveragedver severitiesthatresultedn correctperformance
betweer20-80%

developedby the DBM.

Theerror patternfor centrallesions(S<-S andS units)is quite similar to the patternfor input
lesions. Lesioningthe semanticunits producesa higheroverall error rate (25.6%)thanlesioning
the connectionamongthem(19.6%),but the largestincreasas amongother errors. Also, in the
DBM thesdesionsdon’t producethesamestrongbiastowardssemanticsimilarity in errorsasthey
doin theback-propagationetwork.

The patternof error ratesfor outputlesionsto the DBM is quite different from that for the
back-propagatiometwork. The error ratesfor lesionsto the direct pathway of the DBM (S< Ip
andIp<P) arelowerthanfor inputlesions,andlessbiasediowardsvisualerrors.In addition,the
DBM producedar fewer other errorsthanthe back-propagatiometwork. Perhapsnorestriking,
phonologicaklean-upesionsin theDBM (P<P) still producesignificanterrorrates fairly evenly
distributedacrossype, while the analogoudesionsin the back-propagatiometwork (P=-Cp and
Cp=-P) producevirtually no errorresponsesWith phonologicalklean-updamagethe DBM can
usethe bidirectionalinteractionswith theintermediataunitsasa residualsourceof clean-up.

All lesionlocationsin the DBM shav a mixture of errortypes,andtheir ratioswith the other
error ratesare higherthanfor randomlychosenerror responses.Thus, the DBM replicatesthe
mainH&S results.

4.2 GRAIN Network

Theeffectivenes®f noisein facilitatingthedevelopmenbf strongattractorsn theback-propagation
outputnetwork suggestshatit might have further benefitswithin the DBM frameawvork. McClel-
land [McC90, McC91]] hasrecentlydevelopeda stochastieelaborationof DBMs, called GRAIN
networks (for GradualRandomAdaptie Interactve Nonlinear),that usereal-valued stochastic
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Figure9: Errorratesproducedoy lesionsto eachmainsetof connectionsn the GRAIN network.

units® Althoughthe principlesof GRAIN networks canbe embodiedn awide rangeof specific
network formalisms thetype of GRAIN network we will investigatds identicalto a DBM except
that normally distributednoise(u = 0.0,0 = 0.1) is addedto the input of eachunit at eachtime
step.Theinfluenceof noiseis morewidespreadn a GRAIN network thanin theback-propagation
networks,becausaoiseis appliedto every unit in the network throughoutsettling.

A GRAIN network with the samearchitectureasthe DBM wastrainedon the sametaskusing
CHL. Becausdhe unitsin a GRAIN network are stochasticthe units never completelyreacha
fixedpointin statespace,but randomlyfluctuatearoundit. However, if the amountof noiseis
small relative to the weights,the network will rarely jump out of a minimum asa resultof the
noisealone. In this case,all of the variationin unit statesis causedoy independentoisewith
zeromean,andsothe expectedvalueof the productof two unit statess the productof the states
the unitswould have without noise? For this reasonthe final unit statesat the endof settlingare
computedwithout noisebeforebeingusedin the weightupdaterule. After 3500sweepghrough
thetrainingset,the GRAIN network couldreliably generateny two of theorthographysemantics,
or phonologyof aword whengiventhethird.

The GRAIN network wassubjectedo the samesetof lesionsasthe DBM, andcorrect,omis-
sion,anderrorresponsewereaccumulatedTheinputto unitsremainechoisyduringthegathering
of dataon impairedperformance Figure9 presentghe distribution of errortypesfor eachlesion
location of the GRAIN network. The patternof errorsis quite similar to that of the DBM. The
major differenceis thatthe GRAIN network hassignificantlyhigherratesof semanticerrorsthan

8Actually, GRAIN networksweredevelopedasanelaboratiorof thelnteractive ActivationandCompetitionframe-
work [MR81, RM82] in responséo theneedfor intrinsic variability, asreflectedoy empiricallimitationsof theoriginal
model[Mas88]. However, the processinglynamicsin aDBM area specialcaseof thosein the IAC framawork.

9Fluctuationsin the statesof two connectedinits dueto noisewill tendto beslightly correlateddueto the weight
betweerthem,sothatthe productof their stateswithout noiseonly approximateshe expectedvalueof their product
with noise.
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the DBM for almostall lesionlocations. This makes sensen the following way. The amount
of variationin input dueto noisethata unit experiencesncreasessa function of its numberof
connectionsConsidettheinputaunit j recevesalonga connectiorfrom uniti. Becauseheinput
to uniti hasnoisewith zeromeanaddeduo it, its inputto j canbethoughtof asarandomvariable
with meanequalto whatsw;; would bewithout noise(call it Sw;;) andsomevariancedependent
ontheamountof noise. Thesummednputto j (beforenoiseis added)s thusthe sumof samples
of asetof randomvariables.This sumis alsoarandomvariable with meanequalto thesumof the
meansof the variables(i.e., 3 Swi;), andvarianceequalto the sumof their variances.Thusthe
meanof the summednput to a unit correctlyapproximateshe true meanin a noiselessietwork,
but thevarianceincreaseéinearly with its numberof connectionsin the GRAIN network, seman-
tic unitshave far moreconnectiong149)thanintermediateunits (102) or phonologicalunits(74),
andso they aremoredrasticallyaffectedby the intrinsic noisein the statesof otherunits. They
mustinteractmoreeffectively to compensatéor this variability, resultingin strongerattractorsat
thislevel, andthusmoresemanticrrorsunderdamage.

Nonethelessit is surprisingthatthe GRAIN network andthe DBM are so similar in the na-
ture of the attractorsthey develop, asreflectedin their behaior underdamage.Oneexplanation
may comefrom the behavior of the DBM duringlearning. The mathematicajustificationfor the
learningprocedurgHin89b] assumeshatonly rarelywill smallchangedo the weightscausethe
network to settleinto a differentminimum. However, in practicethis appeardo be moretherule
thanthe exception. As the weightsslowly changethe network samplesamonga large numberof
minimaduring the negative phase(s)raisingtheir enegy to the degreeto which they differ from
theminimaof eachcorrespondingpositive phase As the network improveson thetask,fewer and
fewer of theseminima remainsuficiently goodfor the network to settleinto them. Eventually
the network consistentlyreacheghe single minimum that is mostsimilar to the positve phase
minimum, and reduceghe differenceuntil the training criteriaare met. This type of variability
over weightchangesin settlingto minimaappeargo have similar effectsasthe variability of unit
statesduringa singlesettlingin a GRAIN network. Both processe$orce the network to explore,
andhenceshapeappropriatelya muchlargeramountof the enepgy surfacein statespacehanwill
ultimatelybetraversedvhenthenetwork haslearned Hence onepossiblesxplanationfor why the
GRAIN network is no morerobustto damagehanthe DBM is thatin bothnetworkstheattractors
have beenstrengthenedly pressurdrom variability, albeitfrom differentsources.

BoththeDBM andGRAIN network sene to validatethe claim thatthe natureof the attractors
developedusingback-propagatiohave propertieghataresimilar to thosedevelopedusingthese
alternatve, morebiologically plausibleformalisms.

5 TheTask Domain

Thefinal aspecibf the H&S modelthatwe investigatas the definition of the taskof readingvia
meaning. A ratherseverelimitation of the H&S modelis thatit wastrainedon only 40 words,
allowing only a very coarseapproximationto the rangeof visual and semanticsimilarity among
wordsin a patients vocahulary. More critically, adistinctionamongwordsknown to have a signif-
icanteffect on readingin deepdyslexia—concretenessr imageability—could not be addressed
usingtheoriginal H&S word setbecausét containsonly concretenouns.In this sectionwe sum-
marizeour work in extendingthe H&S approacho accountfor effectsof concretenesandtheir
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interactionswith visualerrors(see[PS91, PS93]for details).

To examinethe effect of concretenessen visual errors,a setof 20 concreteand 20 abstract
words were chosensuchthat eachpair of words differed by a single letter (e.g., ROPE, ROLE).
Following JoneqgJon85], GentnerfGen8], andothers,we develop a semantiaepresentatiom
which concretewords have “richer” representationsn termsof numberof active featuresthan
do abstractwords. Specifically out of 98 possiblesemanticfeatures,concretewords have an
averageof 18.2 features,while abstractwords have an averageof only 4.7 features. A back-
propagatiometwork wastrainedto map orthographyto phonologyvia theserepresentationsn
thesamemannerasfor the back-propagatiosimulationsdescribedn Section2.

Becausabstractvordshave far fewer featuresthey arelessableto engagghesemanticlean-
up mechanisneffectively, and mustrely moreheavily on the direct pathway wherevisualinflu-
encesare strongest. As a result, lesionsto the direct pathway of the input network reproduce
the effectsof concretenesandtheir interactionwith visual errorsfoundin deepdyslexia: better
correctperformancdor concreteover abstractwords,a tendeng for error response$o be more
concretethanstimuli, and a higher proportionof visual errorsin responseo abstractcompared
with concretevords.

Surprisingly severelesionsto the clean-uppathway producethe oppositeeffect, with abstract
wordsnow beingreadbetterthanconcretevords,andconcretevordsproducingmorevisualerrors
thandotheabstractvords. Thisreversalariseshecauseynderthistypeof lesion,the processingf
mostconcretevordsis impairedbut mary abstracivordscanbereadsolelyby thedirectpathway.

In fact, thereis a singleknown exceptionto the advantagefor concretewordsshavn by deep
dyslexic patients:patientCAV with concreteword dyslecia [War81]. CAV failedto readconcrete
wordslike MILK andTREE but succeededt highly abstractvordssuchasAaPPLAUSE, EVIDENCE,
andINFERIOR. Overall, abstractvordsweremorelik ely to be correctlyreadthanconcreteg(55%
vs. 36%). In complementaryashion,63% of his visual error responsesvere more abstracthan
the stimulus. Furthermore the hypothesisof severe clean-updamageis consistentwith other
aspectf his performance.His readingdisorderwas quite severeinitially, and he also shaved
an advantagefor abstractwordsin picture-word matchingwith auditorypresentationsuggesting
modality-independerdamageatthelevel of the semanticsystem.

Overall, the network successfullyextendsthe H&S approacto accountfor the effectsof con-
cretenes& deepdyslexia, andalsooffersthe possibility of explainingthe single,enigmaticcase
of concreteword dyslexia. Thus,togethemwith extrapolationshasedon previoustheorizing(e.g.,
[Fun87]),the connectionistipproactoffersa comprehensie, principledaccountof the full range
of symptomdoundin deepdyslexia.

6 Conclusions

Hinton and Shallice[HS91] offer a connectionistaccountin which the centralaspectsof deep
dyslexia—the existenceof semanticerrorsandtheir co-occurrencevith visualandmixed visual-
and-semantierrors—arisenaturally asa resultof damageto a network that builds attractorsin
mappingorthographyto semanticsWhile the approachasthe advantageover traditionalmodels
of beingfar more computationallyexplicit, it hasthe limitation thatthereis little understanding
of the underlying principles of the model which give rise to its behaior underdamage. The
currentresearchnvolvesa setof connectionissimulationexperimentsaimedboth at developing
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our understandingf theseprinciples,andat extendingthe empiricaladequag of theapproachon
thebasisof this understandingTheresultsdemonstratéhe usefulnes®ef aconnectionisapproach
to understandingleepdyslexia in particular andtheviability of connectionisheuropsychologyn
general.

Furthermore studyingthe breakdevn of behavior in damagedetworks shedslight on their
normalcomputationatharacteristicslmplementinganoutputsystenthatsuccessfullypronounces
a setof wordsfrom their semanticsvasrelatively straightforvard—thelimitations of the system
becameapparenonly underdamage Thetendeng for distributedoutputrepresentation® leadto
blendsunderdamageclarifiesthe needfor strongerattractorghatencodeconstraintsatthe appro-
priatelevel of structurein the output. Thefactthatcontrastve Hebbianlearningin a deterministic
BoltzmannMachineandin a GRAIN network producessuchattractorsnaturally perhapsasa
resultof variability over weightchangesis a significantadvantageof thatframework.

Connectionishetworkswould appeata priori to beanappropriatdormalismwithin which to
developcomputationaiodelsof neuropsychologicalisorders Althoughthespecificrelationship
betweernthesenetworksandneurobiologyis far from clear[SKC89,Smo88],thebeliefthatrepre-
sentatiorandcomputationn thesenetworksresemblesieuralcomputatiorat somelevel remains
oneof their strongestttractions.As the presentesearchllustrates,the factthatthe behavior of
connectionistnetworks after damageresembleghat of neurologicalpatientssupportsthe claim
thattheapparensimilarity is, in fact, substantial.
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