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1 Introduction

A principal observation in the study of language acquisi-
tion is that people exposed to a language as children are
more likely to achieve fluency in that language than those
first exposed to it as adults, giving rise to the popular no-
tion of a critical period for language learning (Lenneberg,
1967; Long, 1990). This is perhaps surprising since chil-
dren have been found to be inferior to adults in most tests
of other cognitive abilities.

A variety of explanations have been put forth to ac-
count for the benefit of early language learning. Possi-
bly the most prevalent view is that children possess a spe-
cific “language acquisition device” that is programmati-
cally deactivated prior to or during adolescence (Chom-
sky, 1965; McNeill, 1970). Important to this view is that
knowledge or processes necessary for effective language
learning are only available for a limited period of time.
But this theory has trouble accounting for continued ef-
fects of age-of-acquisition after adolescence (Bialystok &
Hakuta, 1999) and evidence that some adult second lan-
guage learners are still able to reach fluency (see Bird-
song, 1999).

An alternative account is provided by Newport’s (1990)
“less-is-more” hypothesis. Rather than attributing the
early language advantage to a specific language learning
device, this theory postulates that children’s language ac-
quisition may be aided rather than hindered by their lim-
ited cognitive resources. According to this view, the abil-
ity to learn a language declines over time as a result of
an increase in cognitive abilities. The reasoning behind
this suggestion is that a child’s limited perception and
memory may force the child to focus on smaller linguis-
tic units which form the fundamental components of lan-
guage, as opposed to memorizing larger units which are
less amenable to recombination. While this is an attrac-
tive explanation, for such a theory to be plausible, the po-
tential benefit of limited resources must be demonstrated
both computationally and empirically.

The strongest evidence for Newport’s theory comes
from computational simulations and empirical findings
of Elman (1991, 1993), Goldowsky and Newport (1993),

Kareev, Lieberman, and Lev (1997), Cochran, McDonald,
and Parault (1999), and Kersten and Earles (2001). In the
current chapter, we consider these studies in detail and, in
each case, find serious cause to doubt their intended sup-
port for the less-is-more hypothesis.

� Elman (1991, 1993) found that simple recurrent con-
nectionist networks could learn the structure of an
English-like artificial grammar only when “starting
small”—when either the training corpus or the net-
work’s memory was limited initially and only grad-
ually made more sophisticated. We show, to the
contrary, that language learning by recurrent net-
works does not depend on starting small; in fact, such
restrictions hinder acquisition as the languages are
made more realistic by introducing graded semantic
constraints (Rohde & Plaut, 1999).

� We discuss the simple learning task introduced by
Goldowsky and Newport (1993) as a clear demon-
stration of the advantage of memory limitations. But
we show that their filtering mechanism actually con-
stitutes a severe impairment to learning in both a sim-
ple statistical model and a neural network model.

� Kareev, Lieberman, and Lev (1997) argued that
small sample sizes, possibly resulting from weak
short-term memory, have the effect of enhancing cor-
relations between two observable variables. But we
demonstrate that the chance that a learner is able to
detect a correlation actually improves with sample
size and that a simple prediction model indeed per-
forms better when it relies on larger samples.

� Cochran, McDonald, and Parault (1999) taught par-
ticipants ASL verbs with and without additional cog-
nitive loads and found apparently better generaliza-
tion performance for participants in the load condi-
tion. But we argue that the learning task actually pro-
vided no support for the expected generalization and
that the no-load participants simply learned the more
reasonable generalization much better.

� Finally, we consider the Kersten and Earles (2001)
findings to provide little support for the less-is-more
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hypothesis because the task learned by participants
in their experiment is unlike natural language learn-
ing in some important and relevant aspects and the
critical manipulation in their experiment involved
staged input, rather than cognitive limitations.

In the final section, we consider some general princi-
ples of learning language-like tasks in recurrent neural
networks and what the implications for human learning
might be. We then briefly discuss an alternative account
for the language-learning superiority of children.

2 Elman (1991, 1993)

Elman (1990, 1991) set out to provide an explicit formu-
lation of how a general connectionist system might learn
the grammatical structure of a language. Rather than com-
prehension or overt parsing, Elman chose to train the net-
works to perform word prediction. Although word pre-
diction is a far cry from language comprehension, it can
be viewed as a useful component of language processing,
given that the network can make accurate predictions only
by learning the structure of the grammar. Elman trained
a simple recurrent network—sometimes termed an “El-
man” network—to predict the next word in sentences gen-
erated by an artificial grammar exhibiting number agree-
ment, variable verb argument structure, and embedded
clauses. He found that the network was unable to learn the
prediction task—and, hence, the underlying grammar—
when presented from the outset with sentences generated
by the full grammar. The network was, however, able to
learn if it was trained first on only simple sentences (i.e.,
those without embeddings) and only later exposed to an
increasing proportion of complex sentences.

It thus seems reasonable to conclude that staged input
enabled the network to focus early on simple and im-
portant features, such as the relationship between nouns
and verbs. By “starting small,” the network had a bet-
ter foundation for learning the more difficult grammatical
relationships which span potentially long and uninforma-
tive embeddings. Recognizing the parallel between this
finding and the less-is-more hypothesis, Elman (1993) de-
cided to investigate a more direct test of Newport’s (1990)
theory. Rather than staging the input presentation, Elman
initially interfered with the network’s memory span and
then allowed it to gradually improve. Again, he found
successful learning in this memory limited condition, pro-
viding much stronger support for the hypothesis.

2.1 Rohde and Plaut (1999) Simulation 1:
Progressive Input

Rohde and Plaut (1999) investigated how the need for
starting small in learning a pseudo-natural language

would be affected if the language incorporated more of
the constraints of natural languages. A salient feature of
the grammar used by Elman is that it is purely syntactic,
in the sense that all words of a particular class, such as the
singular nouns, were identical in usage. A consequence
of this is that embedded material modifying a head noun
provides relatively little information about the subsequent
corresponding verb. Earlier work by Cleeremans, Servan-
Schreiber, and McClelland (1989), however, had demon-
strated that simple recurrent networks were better able to
learn long-distance dependencies in finite-state grammars
when intervening sequences were partially informative of
(i.e., correlated with) the distant prediction. The intuition
behind this finding is that the network’s ability to repre-
sent and maintain information about an important word,
such as the head noun, is reinforced by the advantage this
information provides in predicting words within embed-
ded phrases. As a result, the noun can more effectively
aid in the prediction of the corresponding verb following
the intervening material.

One source of such correlations in natural language are
distributional biases, due to semantic factors, on which
nouns typically co-occur with which verbs. For exam-
ple, suppose dogs often chase cats. Over the course of
training, the network has encountered chased more often
after processing sentences beginning The dog who... than
after sentences beginning with other noun phrases. The
network can, therefore, reduce prediction error within the
embedded clause by retaining specific information about
dog (beyond it being a singular noun). As a result, infor-
mation on dog becomes available to support further pre-
dictions in the sentence as it continues (e.g., The dog who
chased the cat barked). These considerations led us to be-
lieve that languages similar to Elman’s but involving weak
semantic constraints might result in less of an advantage
for starting small in child language acquisition. We be-
gan by examining the effects of an incremental training
corpus, without manipulating the network’s memory. The
methods we used were very similar, but not identical, to
those used by Elman (1991, 1993).

2.1.1 Grammar

Our pseudo-natural language was based on the grammar
shown in Table 1, which generates simple noun-verb and
noun-verb-noun sentences with the possibility of relative
clause modification of most nouns. Relative clauses could
be either subject-extracted or object-extracted. Although
this language is quite simple, in comparison to natural lan-
guage, it is nonetheless of interest because, in order to
make accurate predictions, a network must learn to form
representations of potentially complex syntactic structures
and remember information, such as whether the subject
was singular or plural, over lengthy embeddings. The
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Table 1: The Grammar Used in Simulation 1

S � NP VI . | NP VT NP .
NP � N | N RC
RC � who VI | who VT NP | who NP VT
N �

boy | girl | cat | dog | Mary | John |
boys | girls | cats | dogs

VI �
barks | sings | walks | bites | eats |
bark | sing | walk | bite | eat

VT �
chases | feeds | walks | bites | eats |
chase | feed | walk | bite | eat

Note: Transition probabilities are specified and additional
constraints are applied on top of this framework.

Table 2: Semantic Constraints on Verb Usage

Intransitive Transitive Objects
Verb Subjects Subjects if Transitive

chase – any any
feed – human animal
bite animal animal any
walk any human only dog
eat any animal human
bark only dog – –
sing human or cat – –
Note: Columns indicate legal subject nouns when verbs
are used intransitively or transitively and legal object nouns
when transitive.

grammar used by Elman was nearly identical, except that
it had one fewer mixed transitivity verb in singular and
plural form, and the two proper nouns, Mary and John,
could not be modified.

In our simulation, several additional constraints were
applied on top of the grammar in Table 1. Primary among
these was that individual nouns could engage only in cer-
tain actions, and that transitive verbs could act only on cer-
tain objects (see Table 2). Another restriction in the lan-
guage was that proper nouns could not act on themselves.
Finally, constructions which repeat an intransitive verb,
such as Boys who walk walk, were disallowed because of
redundancy. These so-called semantic constraints always
applied within the main clause of the sentence as well as
within any subclauses. Although number agreement af-
fected all nouns and verbs, the degree to which the se-
mantic constraints applied between a noun and its modi-
fying phrase was controlled by specifying the probability
that the relevant constraints would be enforced for a given
phrase. In this way, effects of the correlation between a
noun and its modifying phrase, or of the level of informa-
tion the phrase contained about the identity of the noun,
could be investigated.

CONTEXT

OUTPUT26

HIDDEN70

INPUT26

10

10

copy

Figure 1: The architecture of the network used in the sim-
ulations. Each solid arrow represents full connectivity be-
tween layers, with numbers of units next to each layer.
Hidden unit states are copied to corresponding context
units (dashed arrow) after each word is processed.

2.1.2 Network Architecture

The simple recurrent network used in both Elman’s simu-
lations and in the current work is shown in Figure 1. In-
puts were represented as localist patterns or basis vectors:
Each word was represented by a single unit with activity
1.0, all other units having activity 0.0. This representation
was chosen to deprive the network of any similarity struc-
ture among the words that might provide indirect clues to
their grammatical properties. The same 1-of-n represen-
tation was also used for outputs, which has the convenient
property that the relative activations of multiple words can
be represented independently.

On each time step, a new word was presented by fix-
ing the activations of the input layer. The activity in the
main hidden layer from the previous time step was copied
to the context layer. Activation then propagated through
the network, as in a feed-forward model, such that each
unit’s activation was a smooth, nonlinear (logistic, or sig-
moid) function of its summed weighted input from other
units. The resulting activations over the output units were
then compared with their target activations, generating an
error signal. In a simple recurrent network, errors are not
back-propagated through time (cf. Rumelhart, Hinton, &
Williams, 1986) but only through the current time step,
although this includes the connections from the context
units to the hidden units. These connections allow infor-
mation about past inputs—as encoded in the prior hidden
representation copied onto the context units—to influence
current performance.

Although the target output used during training was the
encoding for the actual next word, a number of words
were typically possible at any given point in the sentence.
Therefore, to perform optimally the network must gen-
erate, or predict, a probability distribution over the word
units indicating the likelihood that each word would occur
next. Averaged across the entire corpus, this distribution
will generally result in the lowest performance error.

3
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2.1.3 Corpora

Elman’s complex training regimen involved training a net-
work on a corpus of 10,000 sentences, 75% of which
were “complex” in that they contained at least one rela-
tive clause. In his simple regimen, the network was first
trained exclusively on simple sentences and then on an
increasing proportion of complex sentences. Inputs were
arranged in four corpora, each consisting of 10,000 sen-
tences. The first corpus was entirely simple, the second
25% complex, the third 50% complex, and the final cor-
pus was 75% complex—identical to the initial corpus that
the network had failed to learn when it alone was pre-
sented during training. An additional 75% complex cor-
pus, generated in the same way as the last training corpus,
was used for testing the network.

In order to study the effect of varying levels of informa-
tion in embedded clauses, we constructed five grammar
classes. In class A, semantic constraints did not apply
between a clause and its subclause, only between nouns
and verbs explicitly present in each individual clause. In
class B, 25% of the subclauses respected the semantic
constraints of their parent clause. In such cases, the modi-
fied noun must be a semantically valid subject of the verb
for a subject-relative or object of the verb for an object-
relative. In class C, 50% of the subclauses respected this
constraint, 75% in class D, and 100% in class E. There-
fore, in class A, which was most like Elman’s grammar,
the contents of a relative clause provided no information
about the noun being modified other than whether it was
singular or plural, whereas class E produced sentences
which were the most English-like. We should empha-
size that, in this simulation, semantic constraints always
applied within a clause, including the main clause. This
is because we were interested primarily in the ability of
the network to perform the difficult main verb prediction,
which relied not only on the number of the subject, but
on its semantic properties as well. In a second simulation,
we investigate a case in which all the semantic constraints
were eliminated to produce a grammar essentially identi-
cal to Elman’s.

As in Elman’s work, four versions of each class were
created to produce languages of increasing complexity.
Grammars A0, A25, A50, and A75, for example, produce
0%, 25%, 50%, and 75% complex sentences, respectively.
In addition, for each level of complexity, the probability
of relative clause modification was adjusted to match the
average sentence length in Elman’s corpora, with the ex-
ception that the 25% and 50% complex corpora involved
slightly longer sentences to provide a more even progres-
sion, reducing the large difference between the 50% and
75% complex conditions apparent in Elman’s corpora.
Specifically, grammars with complexity 0%, 25%, 50%,
and 75% respectively had 0%, 10%, 20%, and 30% mod-

ification probability for each noun.
For each of the 20 grammars (five levels of semantic

constraints crossed with four percentages of complex sen-
tences), two corpora of 10,000 sentences were generated,
one for training and the other for testing. Corpora of this
size are quite representative of the statistics of the full
language for all but the longest sentences, which are rel-
atively infrequent. Sentences longer than 16 words were
discarded in generating the corpora, but these were so rare
( � 0 � 2%) that their loss should have had negligible effects.
In order to perform well, a network of this size couldn’t
possibly “memorize” the training corpus but must learn
the structure of the language.

2.1.4 Training and Testing Procedures

In the condition Elman referred to as “starting small,”
he trained his network for 5 epochs (complete presen-
tations) of each of the four corpora, in increasing order
of complexity. During training, weights were adjusted
to minimize the summed squared error between the net-
work’s prediction and the actual next word, using the
back-propagation learning procedure (Rumelhart et al.,
1986) with a learning rate of 0.1, reduced gradually to
0.06. No momentum was used and weights were updated
after each word presentation. Weights were initialized to
random values sampled uniformly between � 0.001.

For each of the five language classes, we trained the
network shown in Figure 1 using both incremental and
non-incremental training schemes. In the complex regi-
men, the network was trained on the most complex corpus
(75% complex) for 25 epochs with a fixed learning rate.
The learning rate was then reduced for a final pass through
the corpus. In the simple regimen, the network was trained
for five epochs on each of the first three corpora in increas-
ing order of complexity. It was then trained on the fourth
corpus for 10 epochs, followed by a final epoch at the re-
duced learning rate. The six extra epochs of training on
the fourth corpus—not included in Elman’s design—were
intended to allow performance with the simple regimen to
approach asymptote.

Because we were interested primarily in the per-
formance level possible under optimal conditions, we
searched a wide range of training parameters to determine
a set which consistently achieved the best performance
overall.1 We trained our network with back-propagation
using momentum of 0.9, a learning rate of 0.004 reduced
to 0.0003 for the final epoch, a batch size of 100 words per
weight update, and initial weights sampled uniformly be-
tween � 1.0 (cf. � 0.001 for Elman’s network). Network
performance for both training and testing was measured

1The effects of changes to some of these parameter values—in partic-
ular, the magnitude of initial random weights—are evaluated in a second
simulation.
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in terms of divergence and network outputs were normal-
ized using Luce ratios (Luce, 1986), also known as soft-
max constraints (see Rohde & Plaut, 1999).

Because our grammars were in standard stochastic,
context-free form, it was possible to evaluate the network
by comparing its predictions to the theoretically correct
next-word distributions given the sentence context (Ro-
hde, 1999). By contrast, it was not possible to generate
such optimal predictions based on Elman’s grammar. In
order to form an approximation to optimal predictions,
Elman trained an empirical language model on sentences
generated in the same way as the testing corpus. Predic-
tions by this model were based on the observed next-word
statistics given every sentence context to which it was ex-
posed.

2.1.5 Results and Discussion

Elman did not provide numerical results for the complex
condition, but he did report that his network was unable
to learn the task when trained on the most complex cor-
pus from the start. However, learning was effective in the
simple regimen, in which the network was exposed to in-
creasingly complex input. In this condition, Elman found
that the mean cosine2 of the angle between the network’s
prediction vectors and those of the empirical model was
0.852 (SD = 0.259), where 1.0 is optimal.

Figure 2 shows, for each training condition, the mean
divergence error per word on the testing corpora of our
network when evaluated against the theoretically optimal
predictions given the grammar. To reduce the effect of
outliers, and because we were interested in the best possi-
ble performance, results were averaged over only the best
16 of 20 trials. Somewhat surprisingly, rather than an ad-
vantage for starting small, the data reveals a significant ad-
vantage for the complex training regimen (F1 � 150 = 53.8,
p � .001). Under no condition did the simple training
regimen outperform the complex training. Moreover, the
advantage in starting complex increased with the propor-
tion of fully constrained relative clauses. Thus, when the
16 simple and 16 complex training regimen networks for
each grammar were paired with one another in order of
increasing overall performance, there was a strong posi-
tive correlation (r = .76, p � .001) between the order of
the grammars from A–E and the difference in error be-
tween the simple versus complex training regimes.3 This
is consistent with the idea that starting small is most ef-
fective when important dependencies span uninformative

2The cosine of the angle between two vectors of equal dimensionality
can be computed as the dot product (or sum of the pairwise products of
the vector elements) divided by the product of the lengths of the two
vectors.

3The correlation with grammar class is also significant (r = .65, p �

.001) when using the ratio of the simple to complex regimen error rates
for each pair of networks, rather than their difference.
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Figure 2: Mean divergence per word prediction over the
75% complex testing corpora generated from grammar
classes A through E (increasing in the extent of semantic
constraints) for the simple and complex training regimes.
Note that lower values correspond to better performance.
Means and standard errors were computed over the best
16 of 20 trials in each condition.

clauses. Nevertheless, against expectations, starting small
failed to improve performance even for class A, in which
relative clauses did not conform to semantic constraints
imposed by the preceding noun.

In summary, starting with simple inputs proved to be
of no benefit and was actually a significant hindrance
when semantic constraints applied across clauses. The
networks were able to learn the grammars quite well even
in the complex training regimen, as evidenced by addi-
tional analyses reported in Rohde and Plaut (1999). More-
over, the advantage for training on the fully complex cor-
pus increased as the language was made more English-
like by enforcing greater degrees of semantic constraints.
While it has been shown previously that beginning with
a reduced training set can be detrimental in classification
tasks such as exclusive-OR (Elman, 1993), it appears that
beginning with a simplified grammar can also produce
significant interference on a more language-like predic-
tion task. At the very least, starting small does not appear
to be of general benefit in all language learning environ-
ments.

2.2 Rohde and Plaut (1999) Simulation 2:
Replication of Elman (1993)

Our failure to find an advantage for starting small in our
initial work led us to ask what differences between that
study and Elman’s were responsible for the discrepant re-
sults. All of the grammars in the first set of simulations
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differed from Elman’s grammar in that the language re-
tained full semantic constraints within the main clause. It
is possible that within-clause dependencies were in some
way responsible for aiding learning in the complex train-
ing regimen. Therefore, we produced a language, labeled
R for replication, which was identical to Elman’s in all
known respects, thus ruling out all but the most subtle dif-
ferences in language as the potential source of our dis-
parate results.

2.2.1 Methods

Like Elman’s grammar, grammar R uses just 12 verbs:
2 pairs each of transitive, intransitive, and mixed transi-
tivity. In addition, as in Elman’s grammar, the proper
nouns Mary and John could not be modified by a rela-
tive clause and the only additional constraints involved
number agreement. We should note that, although our
grammar and Elman’s produce the same set of strings to
the best of our knowledge, the probability distributions
over the strings in the languages may differ somewhat.
As before, corpora with four levels of complexity were
produced. In this case they very closely matched Elman’s
corpora in terms of average sentence length.

Networks were trained on this language both with our
own methods and parameters and with those as close as
possible to the ones Elman used. In the former case, we
used normalized output units with a divergence error mea-
sure, momentum of 0.9, eleven epochs of training on the
final corpus, a batch size of 10 words, a learning rate of
0.004 reduced to 0.0003 for the last epoch, and initial
weights between � 1. In the latter case, we used logis-
tic output units, squared error, no momentum, five epochs
of training on the fourth corpus, online weight updating
(after every word), a learning rate of 0.1 reduced to 0.06
in equal steps with each corpus change, and initial weights
between � 0 � 001.

2.2.2 Results and Discussion

Even when training on sentences from a grammar with
no semantic constraints, our learning parameters resulted
in an advantage for the complex regimen. Over the best
12 of 15 trials, the network achieved an average diver-
gence of 0.025 under the complex condition compared
with 0.036 for the simple condition (F1 � 22 = 34.8, p �
.001). Aside from the learning parameters, one impor-
tant difference between our training method and Elman’s
was that we added 6 extra epochs of training on the fi-
nal corpus to both conditions. This extended training did
not, however, disproportionately benefit the complex con-
dition. Between epoch 20 and 25, the average divergence
error under the simple regimen dropped from 0.085 to
0.061, or 28%. During the same period, the error under

the complex regimen only fell 8%, from 0.051 to 0.047. 4

When the network was trained using parameters simi-
lar to those chosen by Elman, it failed to learn adequately,
settling into bad local minima. The network consistently
reached a divergence error of 1.03 under the simple train-
ing regimen and 1.20 under the complex regimen. In
terms of city-block distance, these minima fall at 1.13 and
1.32 respectively—much worse than the results reported
by Elman. We did, however, obtain successful learning
by using the same parameters but simply increasing the
weight initialization range from � 0 � 001 to � 1 � 0, although
performance under these conditions was not quite as good
as with all of our parameters and methods. Even so, we
again found a significant advantage for the complex reg-
imen over the simple regimen in terms of mean diver-
gence error (means of 0.122 vs. 0.298, respectively; F1 � 22

= 121.8, p � .001).
Given that the strength of initial weights appears to be

a key factor in successful learning, we conducted a few
additional runs of the network to examine the role of this
factor in more detail. The networks were trained on 25
epochs of exposure to corpus R75 under the complex reg-
imen using parameters similar to Elman’s, although with
a fixed learning rate of 1.0 (i.e., without annealing). Fig-
ure 3 shows the sum squared error on the testing corpus
over the course of training, as a function of the range of
the initial random weights. It is apparent that larger initial
weights help the network break through the plateau which
lies at an error value of 0.221.

The dependence of learning on the magnitudes of ini-
tial weights can be understood in light of properties of the
logistic activation function, the back-propagation learn-
ing procedure, and the operation of simple recurrent net-
works. It is generally thought that small random weights
aid error-correcting learning in connectionist networks
because they place unit activations within the linear range
of the logistic function where error derivatives, and hence
weight changes, will be largest. However, the error
derivatives that are back-propagated to hidden units are
scaled by their outgoing weights; feedback to the rest of
the network is effectively eliminated if these weights are
too small. Moreover, with very small initial weights, the
summed inputs of units in the network are all almost zero,
yielding activations very close to 0.5 regardless of the in-
put presented to the network. This is particularly prob-
lematic in a simple recurrent network because it leads to
context representations (copied from previous hidden acti-
vations) that contain little if any usable information about
previous inputs. Consequently, considerably extended

4The further drop of these error values, 0.047 and 0.061, to the re-
ported final values of 0.025 and 0.036 resulted from the use of a reduced
learning rate for epoch 26. Ending with a bit of training with a very low
learning rate is particularly useful when doing online, or small batch
size, learning.
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Figure 3: Sum squared error produced by the network on
the testing set at each epoch of training on corpus R75

under the complex regimen, as a function of the range of
initial random weights.

training may be required to accumulate sufficient weight
changes to begin to differentiate even the simplest differ-
ences in context (see Figure 3). By contrast, starting with
relatively large initial weights not only preserves the back-
propagated error derivatives but also allows each input to
have a distinct and immediate impact on hidden represen-
tations and, hence, on context representations. Although
the resulting patterns may not be particularly good rep-
resentations for solving the task (because the weights are
random), they at least provide an effective starting point
for beginning to learn temporal dependencies.

In summary, on a grammar essentially identical to that
used by Elman (1991, 1993), we found a robust advan-
tage for training with the full complexity of the language
from the outset. Although we cannot directly compare
the performance of our network to that of Elman’s net-
work, it appears likely that the current network learned the
task considerably better than the empirical model that we
used for evaluation. By contrast, the network was unable
to learn the language in either the simple or the complex
condition when we used parameters similar to those em-
ployed by Elman. However, increasing the range of the
initial connection weights allowed the network to learn
quite well, although in this case we again found a strong
advantage for starting with the full grammar. It was possi-
ble to eliminate this advantage by removing all dependen-
cies between main clauses and their subclauses, and even
to reverse it by, in addition, training exclusively on com-
plex sentences. But these training corpora bear far less re-
semblance to the actual structure of natural language than
do those which produce a clear advantage for training on
the full complexity of the language from the beginning.

2.3 Rohde and Plaut (1999) Simulation 3:
Progressive Memory

Elman (1993) argued that his finding that initially simpli-
fied inputs were necessary for effective language learn-
ing was not directly relevant to child language acquisi-
tion because, in his view, there was little evidence that
adults modify the grammatical structure of their speech
when interacting with children (although we would dis-
agree, see, e.g., Gallaway & Richards, 1994; Snow, 1995;
Sokolov, 1993). As an alternative, Elman suggested that
the same constraint could be satisfied if the network itself,
rather than the training corpus, was initially limited in its
complexity. Following Newport’s less-is-more hypothesis
(Newport, 1990; Goldowsky & Newport, 1993), Elman
proposed that the gradual maturation of children’s mem-
ory and attentional abilities could actually aid language
learning.

To test this proposal, Elman (1993) conducted addi-
tional simulations in which the memory of a simple re-
current network (i.e., the process of copying hidden ac-
tivations onto the context units) was initially hindered
and then allowed to gradually improve over the course
of training. When trained on the full complexity of the
grammar from the outset, but with progressively improv-
ing memory, the network was again successful at learn-
ing the structure of the language which it had failed to
learn when using fully mature memory throughout train-
ing. In this way, Elman’s computational findings dove-
tailed perfectly with Newport’s empirical findings to pro-
vide what seemed like compelling evidence for the impor-
tance of maturational constraints on language acquisition
(see, e.g., Elman et al., 1996, for further discussion).

Given that the primary computational support for the
less-is-more hypothesis comes from Elman’s simulations
with limited memory rather than those with incremental
training corpora, it is important to verify that our contra-
dictory findings of an advantage for the complex regimen
in Simulations 1 and 2 also hold by comparison with train-
ing under progressively improving memory. Accordingly,
we conducted simulations similar to those of Elman, in
which a network with gradually improving memory was
trained on the full semantically constrained grammar, E,
as well as on the replication grammar, R, using both El-
man’s and our own training parameters.

2.3.1 Methods

In his limited-memory simulation, Elman (1993) trained
a network exclusively on the complex corpus, 5 which he
had previously found to be unlearnable. As a model of

5It is unclear from the text whether Elman (1993) used the corpus
with 75% or 100% complex sentences in the progressive memory exper-
iments.
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limited memory span, the recurrent feedback provided by
the context layer was eliminated periodically during pro-
cessing by setting the activations at this layer to 0.5. For
the first 12 epochs of training, this was done randomly af-
ter 3–4 words had been processed, without regard to sen-
tence boundaries. For the next 5 epochs the memory win-
dow was increased to 4–5 words, then to 5–6, 6–7, and
finally, in the last stage of training, the memory was not
interfered with at all.

In the current simulation, the training corpus consisted
of 75% complex sentences, although Elman’s may have
extended to 100% complexity. Like Elman, we extended
the first period of training, which used a memory win-
dow of 3–4 words, from 5 epochs to 12 epochs. We then
trained for 5 epochs each with windows of 4–5 and 5–
7 words. The length of the final period of unrestricted
memory depended on the training methods. When using
our own methods (see Simulation 2), as when training on
the final corpus in the simple regimen, this period con-
sisted of 10 epochs followed by one more with the re-
duced learning rate. When training with our approxima-
tion of Elman’s methods on grammar R, this final period
was simply five epochs long. Therefore, under both con-
ditions, the memory-limited network was allowed to train
for a total of 7 epochs more than the corresponding full-
memory network in Simulations 1 and 2. When using our
methods, learning rate was held fixed until the last epoch,
as in Simulation 1. With Elman’s method, we reduced the
learning rate with each change in memory limit.

2.3.2 Results and Discussion

Although he did not provide numerical results, Elman
(1993) reported that the final performance was as good
as in the prior simulation involving progressive inputs.
Again, this was deemed a success relative to the com-
plex, full-memory condition which was reportedly unable
to learn the task.

Using our training methods on language R, the limited-
memory condition resulted in equivalent performance to
that of the full-memory condition, in terms of divergence
error (means of 0.027 vs. 0.025, respectively; F1 � 22 =
2.12, p � .15). Limited memory did, however, provide a
significant advantage over the corresponding progressive-
inputs condition from Simulation 2 (mean 0.036; F1 � 22 =
24.4, p � .001). Similarly, for language E, the limited-
memory condition was equivalent to the full-memory con-
dition (mean of 0.093 for both; F � 1) but better than the
progressive-inputs condition from Simulation 2 (mean of
0.115; F1 � 22 = 31.5, p � .001).

With Elman’s training methods on grammar R, the net-
work with limited memory consistently settled into the
same local minimum, with a divergence of 1.20, as did
the network with full memory (see Simulation 2). Using

the same parameters but with initial connection weights
in the range � 1.0, the limited-memory network again per-
formed almost equivalently to the network with full mem-
ory (means of 0.130 vs. 0.122, respectively; F1 � 22 = 2.39,
p � 0.10), and significantly better than the full-memory
network trained with progressive inputs (mean of 0.298;
F1 � 22 = 109.1, p � .001).

To summarize, in contrast with Elman’s findings, when
training on the fully complex grammar from the outset,
initially limiting the memory of a simple recurrent net-
work provided no advantage over training with full mem-
ory, despite the fact that the limited-memory regimen in-
volved 7 more epochs of exposure to the training corpus.
On the other hand, in all of the successful conditions,
limited memory did provide a significant advantage over
gradually increasing the complexity of the training cor-
pus.

2.4 Summary

Contrary to the results of Elman (1991, 1993), Rohde and
Plaut (1999) found that it is possible for a standard simple
recurrent network to gain reasonable proficiency in a lan-
guage roughly similar to that designed by Elman without
staged inputs or memory. In fact, there was a significant
advantage for starting with the full language, and this ad-
vantage increased as languages were made more natural
by increasing the proportion of clauses which obeyed se-
mantic constraints. There may, of course, be other train-
ing methods which would yield even better performance.
However, at the very least, it appears that the advantage of
staged input is not a robust phenomenon in simple recur-
rent networks.

In order to identify the factors that led to the disad-
vantage for starting small, we returned to a more direct
replication of Elman’s work in Simulation 2. Using El-
man’s parameters, we did find what seemed to be an ad-
vantage for starting small, but the network failed to suf-
ficiently master the task in this condition. We do not yet
understand what led Elman to succeed in this condition
where we failed. One observation made in the course
of these simulations was that larger initial random con-
nection weights in the network were crucial for learning.
We therefore reapplied Elman’s training methods but in-
creased the range of the initial weights from � 0 � 001 to

� 1 � 0. Both this condition and our own training parame-
ters revealed a strong advantage for starting with the full
language.

Finally, in Simulation 3 we examined the effect of
progressive memory manipulations similar to those per-
formed by Elman (1993). It was found that, despite in-
creased training time, limited memory failed to provide
an advantage over full memory in any condition. Inter-
estingly, training with initially limited memory was gen-
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erally less of a hindrance to learning than training with
initially simplified input. In all cases, though, successful
learning again required the use of sufficiently large initial
weights.

Certainly there are situations in which starting with
simplified inputs is necessary for effective learning of a
prediction task by a recurrent network. For example, Ben-
gio, Simard, and Frasconi (1994) (see also Lin, Horne,
& Giles, 1996) report such results for tasks requiring a
network to learn contingencies which span 10–60 entirely
unrelated inputs. However, such tasks are quite unlike the
learning of natural language. It may also be possible that
starting with a high proportion of simple sentences is of
significant benefit in learning other language processing
tasks, such as comprehension. A child’s discovery of the
mapping between form and meaning will likely be facili-
tated if he or she experiences propositionally simple utter-
ances whose meaning is apparent or is clarified by the ac-
companying actions of the parent. However, the real ques-
tion in addressing the less-is-more hypothesis is whether
limited cognitive capacity will substantially aid this pro-
cess.

Having failed to replicate Elman’s results, it seems ap-
propriate to turn a critical eye on the other major sources
of evidence for the less-is-more hypothesis. Aside from
Elman’s findings, four main studies have been charac-
terized as providing support for the advantage of learn-
ing with limited resources. Goldowsky and Newport
(1993) presented evidence of the noise-reducing power
of random filtering in a statistical learning model of a
simple morphological system. Kareev, Lieberman, and
Lev (1997) offered a statistical argument in favor of
the correlation-enhancing power of small samples and
performed two empirical studies purported to confirm
this. The other two studies are more purely empirical.
Cochran, McDonald, and Parault (1999) taught partici-
pants ASL verbs with and without the presence of a si-
multaneous cognitive load and with practice on the full
signs or on individual morphemes. Finally, Kersten and
Earles (2001) taught participants a simple novel language
with and without sequential input. We discuss each of the
four papers here in some detail.

3 Goldowsky and Newport (1993)

Goldowsky and Newport (1993) proposed a simple learn-
ing task, and one form of learning model that might be
used to solve the task. Training examples consisted of
pairings of forms and meanings. A form had three parts,
A, B, and C. For each part there were three possible val-
ues: A1, A2, A3, B1, B2, etc. Meanings were also com-
posed of three parts, M, N, and O, each with three values.
There was a very simple mapping from forms to mean-

ings: A1, A2, and A3 corresponded to M1, M2, and M3,
respectively, B1, B2, and B3 corresponded to N1, N2, and
N3, and so forth.6 Thus, the form A2B1C3 had the meaning
M2N1O3. The task was, apparently, to learn this simple
underlying mapping.

Goldowsky and Newport suggested that one way to
solve the task might be to gather a table with counts of all
form and meaning correspondences across some observed
data. If the form A2B1C3 and the meaning M2N1O3 were
observed, the model would increment values of cells in
the table corresponding to the pairing of each of the eight
subsets of the form symbols with each subset of the three
meaning symbols. If trained on all 27 possible examples,
the model would have a value of 9 for each of the cells
correctly pairing individual elements of the form to indi-
vidual elements of the meaning (e.g. A1 to M1 and B3 to
N3). The next largest, incorrectly paired, cells would have
a value of 3 and the rest of the cells would have a value of
1.

Goldowsky and Newport suggested that there is too
much noise in such a table because of the many values
representing incorrect or overly complex pairings. They
then introduced a filtering scheme meant to simulate the
effect of poor working memory on a child’s experiences.
Before a form/meaning pair is entered into the table, some
of its information is lost at random. Half of the time one of
the three elements of the form is retained and half of the
time two elements are retained. Likewise for the mean-
ing. The authors argued that this improves learning be-
cause it produces a table with a higher signal-to-noise ra-
tio. Therefore, they concluded, having limited memory
can be helpful because it can help the learner focus on the
simple, often important, details of a mapping.

But we should examine this learning situation a bit
more carefully. First of all, in what sense is the signal-
to-noise ratio improving as a result of filtering? The ratio
between the correct, largest values in the table in the adult
(unfiltered) case and the next largest competitors was 3:1.
In the child (filtered) case, the expected ratio remains 3:1.
Although some of the competitors will become propor-
tionately less likely, others will not. What is eliminated
by the filtering is the large number of very unlikely map-
pings. So the signal-to-noise ratio is improving if it is
taken to be the ratio of the correct value to the sum of all
other values. If taken to be the ratio of the correct value to
the nearest incorrect value, there is no improvement. Fur-
thermore, the child learner must experience many more
form/meaning pairings than the adult learner before it can
adequately fill its co-occurrence table.

To see the implications of these points, we need to make

6The mapping used in the Goldowsky and Newport (1993) paper ac-
tually included one exception, that form A4B4C4 has meaning M3N3O3.
Because the introduction of this did not seem to strengthen their case for
starting small, it is eliminated here for simplicity.
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Figure 4: Learning the Goldowsky & Newport (1993) task
using raw counts in a noise-free environment.

the task somewhat more explicit. Goldowsky and New-
port (1993) presented a model that counts statistics, but
not one that actually solves the form/meaning mapping.
To complete the story, we will need to generate a model
that is capable of taking a form and producing its best
guess for the appropriate meaning. Two potential solu-
tions to this problem immediately come to mind. In the
first, arguably simpler, method, the model looks down the
column of values under the given form and chooses the
meaning corresponding to the largest value. If two mean-
ings have the same strength, the model is counted wrong.
This will be referred to as the Plurality method.

In the second method, the model draws at random from
the distribution of values, such that the probability of se-
lecting a meaning is proportional to the value associated
with that meaning. This Sampling method seems to be
more in line with what Goldowsky and Newport implied
might be going on, judging from their use of the term
signal-to-noise ratio. The Plurality method only fails if
the nearest competitor is as strong as the correct answer.
In contrast, the Sampling method is wrong in proportion
to the total strength of competitors. Both of these meth-
ods were implemented and tested experimentally with and
without random filtering. The models were judged by
their ability to provide the correct meaning for each of
the nine forms involving a single element. The results,
averaged over 100 trials in each condition, are shown in
Figure 4.

As Goldowsky and Newport (1993) suggested, their fil-
tering mechanism is indeed beneficial when used with the
Sampling method, achieving a score of about 25.2% ver-
sus 14.3% without filtering. However, Sampling overall
performs quite poorly. The Plurality method is much more
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Figure 5: Learning the Goldowsky & Newport (1993) task
using raw counts with random loss of 50% of the data.

effective. But in that case, filtering is harmful, and slows
learning down considerably. Even after 200 trials, the fil-
tered model is able to completely solve the task only about
80% of the time.

Now one might reasonably make the argument that this
isn’t a fair comparison. Perhaps the Plurality method is
much more susceptible to noise and the benefit of the fil-
ter isn’t apparent in such perfect conditions. After all, it
is probably unreasonable to expect that a human learner
is able to perfectly notice and store all available informa-
tion. To test this possibility, a source of noise was added to
the simulations. 50% of the time, the operation of incre-
menting a value in the table failed. Thus, half of the data
was lost at random. As shown in Figure 5, this manipu-
lation had almost no effect on the Sampling method, but
did have some effect on the Plurality method. However,
the Plurality method remained significantly better without
the filter.

A final consideration is that the bubble diagrams used
to represent the form/meaning co-occurrence table in the
Goldowsky and Newport (1993) paper did not directly re-
flect raw co-occurrence counts. The radius of the bubbles
was proportional to the ratio of the co-occurrence count
to the square root of the product of the overall number
of occurrences of the form and the overall number of oc-
currences of the meaning. This was termed the consis-
tency of co-occurrence. So one might ask, how well do
the two proposed models perform if they work with co-
occurrence consistency values rather than raw counts. As
shown in Figure 6, performance declines slightly for the
Sampling method and improves slightly for the Plurality
method with filtering. But overall the results are qualita-
tively similar.
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Figure 6: Learning the Goldowsky & Newport (1993) task
using correlation values with no noise.

Thus, with the much more effective Plurality method of
determining form/meaning pairs from co-occurrence data,
the filtering mechanism was a serious hindrance. But it
seems that building a large table may not be at all similar
to the way the human brain might solve this mapping task.
Perhaps a better model is that of a connectionist network.
Could such a model learn the underlying regularity and
would it benefit from the same filtering method proposed
by Goldowsky and Newport? To answer this question, we
performed some simulation experiments.

First a simple one-layer network was constructed, with
a 9-unit input layer fully connected to a 9-unit output
layer. The nine input units corresponded to the nine pos-
sible elements of the form. One of the first three units was
turned on to represent the A element, one of the second
set of three units was turned on to represent the B ele-
ment, and so forth. Similarly, the nine units in the output
representation corresponded to the nine possible elements
of the meaning, with three of the nine units normally hav-
ing targets of 1, and the rest having targets of 0. If an
element of the form was eliminated by the filtering mech-
anism, the corresponding three units of the input were all
turned off. If an element of the meaning was eliminated,
the corresponding three units of the output had no target
values. The network was tested by presenting it with a
single element of the form as an input. Although the net-
work may never have been trained to perform this particu-
lar mapping, the desired response is that it will output just
the corresponding element of the meaning. A response
was considered correct if the activations of all nine output
units were on the correct side of 0.5.

In order to argue that filtering is or is not beneficial,
one cannot simply rely on performance under a single set
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Figure 7: Learning the Goldowsky & Newport (1993) task
using a single layer neural network.

of training parameters. It is possible that the benefit of
filtering could be masked by a poor choice of parameters.
Therefore, we trained networks using 32 parameter sets.
Four learning rates (0.05, 0.1, 0.2, 0.4) were crossed with
two momentum values (0.0, 0.9), two initial weight ranges
( � 0 � 1, � 1 � 0), and two weight decay values (0.0, 0.0001).
Networks were trained on 1000 randomly selected exam-
ples using online learning, meaning that weight updates
were performed after each example.

Performance was measured by testing the model’s abil-
ity to produce the correct meaning for each of the nine
isolated forms. The final performance in each condition,
averaged over 50 trials, is shown in Table 3. Without fil-
tering, the network learns best with small initial weights,
some weight decay, momentum, and a large learning rate.
With filtering, the network learns best with a small learn-
ing rate and no momentum. But under no conditions did
filtering improve learning. Figure 7 shows the averaged
learning profiles with and without filtering using training
parameters with which the filtered networks performed
quite well: no weight decay or momentum, initial weights

� 0 � 1, and learning rate 0.05. Although they reach sim-
ilar final performance, the networks learned much more
quickly and smoothly without filtering.

One might argue that we have cheated by applying a
single layer network to the task because such a network
cannot learn very complex mappings, so it doesn’t need
filtering to learn this simple one. Admittedly, if the task
were not so simple, we would have used a larger network.
To test the possibility that a larger network will fail to
learn the simple rule without filtering, we trained a two
layer, 9-9-9, feed-forward network using the same task
and parameters.
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Table 3: Final performance levels with a 9-9 network under various conditions. The left value in each pair is the
performance without filtering and the right value is the performance with filtering.

Weight Momentum Initial Learning Rate
Decay Weights 0.05 0.1 0.2 0.4

0 0 � 0 � 1 100.0 98.9 100.0 98.4 100.0 76.7 100.0 44.9
0 0 � 1 � 0 85.6 77.3 96.9 88.7 98.7 75.6 100.0 45.6
0 0.9 � 0 � 1 100.0 33.3 100.0 16.7 100.0 4.4 100.0 3.3
0 0.9 � 1 � 0 100.0 32.2 100.0 15.8 100.0 4.4 100.0 3.3

0.0001 0 � 0 � 1 100.0 99.6 100.0 97.6 100.0 78.0 100.0 44.4
0.0001 0 � 1 � 0 88.9 79.6 97.1 89.3 100.0 76.0 100.0 46.4
0.0001 0.9 � 0 � 1 100.0 42.2 100.0 22.2 100.0 5.6 100.0 3.3
0.0001 0.9 � 1 � 0 100.0 42.2 100.0 22.0 100.0 5.6 100.0 3.1

Table 4: Final performance levels with a 9-9-9 network under various conditions. The left value in each pair is the
performance without filtering and the right value is the performance with filtering.

Weight Momentum Initial Learning Rate
Decay Weights 0.05 0.1 0.2 0.4

0 0 � 0 � 1 0.0 1.1 42.0 2.2 92.9 8.9 99.1 26.9
0 0 � 1 � 0 60.2 14.2 72.2 41.6 88.4 40.7 88.4 33.3
0 0.9 � 0 � 1 98.7 24.9 93.8 14.4 81.1 6.4 19.6 2.4
0 0.9 � 1 � 0 81.8 23.8 79.1 14.4 76.2 5.8 41.1 2.4

0.0001 0 � 0 � 1 0.0 1.1 35.6 2.2 94.0 7.6 99.6 26.9
0.0001 0 � 1 � 0 66.0 10.0 79.1 37.1 93.1 47.1 88.4 34.7
0.0001 0.9 � 0 � 1 99.3 24.7 99.3 16.2 99.6 6.9 94.0 2.9
0.0001 0.9 � 1 � 0 99.3 25.6 99.3 15.6 99.1 5.6 99.1 3.6

As shown in Table 4, the two layer network doesn’t
solve the task as easily as the one layer network. But un-
der several different choices of parameters, the network is
able to master the task nearly all of the time without filter-
ing. The best performance achieved with filtering, on the
other hand, was just 47.1% correct. In only two cases—
with a small learning rate, small initial weights, and no
momentum—did the filtered networks perform better than
the unfiltered ones. But in those cases the filtered net-
works only reached an average performance of 1.1%.

In summary, the filtering mechanism proposed by
Goldowsky and Newport (1993) for this task did not im-
prove the performance of either an effective tabulation
strategy or two neural network models. Although the ran-
dom filtering mechanism sometimes isolates correct one-
to-one form/meaning pairs, it more frequently destroys
those pairs and isolates incorrect ones. This introduces
noise that outweighs the occasional benefit and that can
be detrimental to learning.

4 Kareev, Lieberman, and Lev
(1997)

Kareev, Lieberman, and Lev (1997) began by reiterating
a theoretical point about sampled distributions which was
first raised in Kareev (1995). If a distribution over two
correlated real-valued variables is sampled repeatedly, the
expected median of the observed correlations in the sam-
ples increases as the size of the sample decreases. On the
basis of this fact, Kareev et al. suggested that humans
estimating correlations in observed events will be better
at detecting those correlations if they have limited work-
ing memory, and thus presumably rely on smaller remem-
bered samples in formulating their judgments.

In the first experiment, participants were given 128 en-
velopes, each containing a coin. Envelopes were either
red or green and the coin inside was either marked with
an X or an O. Participants opened envelopes one-by-one
in random order and each time tried to predict the type of
coin based on the envelope’s color. The envelopes’ con-
tents were manipulated to produce true color/mark corre-
lations ranging from -0.6 to 0.6. The eight participants
in each condition were grouped based on the results of a
single-trial digit-span test of working memory. Response
correlation was computed for each participant using the
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matrix of envelope colors and mark predictions. Kareev
et al. found that the low-span participants tended to have
larger response correlations and to have more accurate
overall predictions.

This is certainly an interesting result, but the theoreti-
cal explanation ought to be reconsidered. To begin with,
the authors stressed the fact that median observed corre-
lation increases as sample size decreases. That is, with
a smaller sample, observers have a higher probability of
encountering a correlation that is larger than the true cor-
relation. This is mainly an artifact of the increased noise
resulting from small samples. On the basis of increasing
median, Kareev et al. concluded that, “The limited ca-
pacity of working memory increases the chances for early
detection of a correlation.. . . [A] relationship, if it exists,
is more likely to be detected, the smaller the sample” (p.
279). Thus, the authors seem to be equating median esti-
mation with the ability to detect any correlation whatso-
ever. However, they do not offer an explicit account of
how participants might be solving the correlation detec-
tion or coin prediction task.

The median correlation happens to be one measure
computable over a series of samples.7 But there are other
measures that may be more directly applicable to the prob-
lem of detecting a correlation, such as the mean, and not
all measures increase in magnitude with smaller samples.
The mean correlation diminishes with decreasing sample
size. But an individual participant is not encountering a
series of samples, but just one sample, so the median or
mean computed over multiple samples is not necessarily
relevant.

So what is an appropriate model of how participants
are solving the task, and how is this model affected by
sample size? Signal detection theory typically assumes
that human observers have a threshold above which a sig-
nal is detected. In this case, we might presume that the
signal is the perceived correlation between envelope color
and coin type, and that the correlation, whether positive or
negative, is detectable if its magnitude is above a partici-
pant’s threshold. If participants are basing their responses
in the coin prediction task on a signal detection procedure
involving a fixed threshold, we must ask what is the prob-
ability that a sample of size N from a distribution with
true correlation C has an observed correlation greater than
a given threshold?

It seems reasonable to suppose that the typical human
threshold for detecting correlations in small samples prob-
ably falls between 0.05 and 0.2, although it presumably
varies based on task demands. Figure 8 shows the prob-
ability that a small sample has an observed correlation
above 0.1 as a function of the size of the sample and the
strength of the true correlation. The data in this exper-

7The term sample is used here to refer to a set of observations, or
examples, not just a single observation.
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Figure 8: The probability that the observed correlation
value is greater than 0.1 (and thus presumably detectable)
as a function of sample size and true correlation (C).

iment involved pairs of real-valued random variables. A
desired correlation, C, was achieved by generating the val-
ues as follows:

a � rand()
b � Ca

���
1 � C2 rand()

where rand() produces a random value uniformly dis-
tributed in the range [-1,1]. 1 million trials were con-
ducted for each pairing of sample size and correlation.

Clearly, for the range of parameters covered, the chance
that the observed correlation is greater than threshold in-
creases monotonically with sample size. Larger samples
lead to a greater chance of detecting a correlation. One
may disagree with the arbitrary choice of 0.1 for the de-
tection threshold, but the same penalty for small samples
is seen with a value of 0.2, provided the true correlation
is greater than 0.2, and the effect becomes even stronger
with thresholds below 0.1. Thus, the fact that the median
observed correlation increases with small sample sizes
does not bear on what is arguably a reasonable model of
human correlation detection.

Another important issue is that the sampling distribu-
tion measures discussed by Kareev et al. were for pairs of
real-valued variables, but the experiments they conducted
involved binary variables. Do the same principles apply to
small samples of binary data? Figure 9 shows the median
observed correlation in small samples of binary data, as a
function of the sample size and the true correlation. Al-
though median correlation decreases as a function of sam-
ple size for real-valued data, median correlation doesn’t
seem to vary in any systematic way as a function of sam-
ple size for binary data. There is simply more variabil-
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Figure 9: The median observed correlation in small sam-
ples of binary data, as a function of sample size and true
correlation (C).

ity in the small samples. But again, median correlation
value is not necessarily indicative of the ease of detection.
As with real-valued data, the probability that an observed
correlation is greater than some small threshold tends to
increase with larger samples of binary data.

But it may be possible that these statistical measures
don’t accurately reflect the power of small samples in a
practical context. Therefore, we designed a simple model
to perform the envelope/coin task using varying levels of
working memory. The model was intended to reflect the
manner in which Kareev et al. seem to imply humans
might be solving this task. The model simply remembers
the contents of the last N cards of each color and chooses
the coin that was more frequent in that sample. If the
coins were equally frequent in the sample, the choice is
random. The model was run with three sample sizes, 5, 9,
and 13, meant to reflect small, medium, and large working
memory capacity and was run 1000 times on each of the
14 distributional conditions used by Kareev, Lieberman,
and Lev (1997). 7 of these conditions were symmetric in
that they used an equal number of X’s and O’s and 7 did
not satisfy this constraint and were termed asymmetric.
Each symmetric condition had a corresponding asymmet-
ric one with approximately the same envelope/coin corre-
lation. The correlation between the models’ predictions
and the envelope color was computed in the same way as
for the experimental participants.

Figure 10 shows the prediction correlation values as a
function of actual correlation for the three working mem-
ory levels, with results in the corresponding symmetric
and asymmetric conditions averaged. The identity base-
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Figure 10: The correlation between envelope color and
the models’ predictions of coin marking as a function of
the actual correlation and the model’s memory window
size.

line is provided as a reference, but note that optimal per-
formance in this task has nothing to do with matching the
actual correlation values. An optimal predictor will al-
ways predict the more likely coin, whether the actual cor-
relation is 0.1 or 0.9. Contrary to Kareev et al.’s predic-
tion, the larger sample size results in larger response cor-
relations, not smaller ones. Figure 11 gives the prediction
accuracy as a function of correlation and window size. Al-
though the difference is fairly small, larger window sizes
consistently outperformed the smaller ones.

Therefore, although the results of the first experiment
in Kareev, Lieberman, and Lev (1997) are rather inter-
esting and deserve replication and explanation, these re-
sults cannot be attributed to the effects of small samples
on perceived correlation. The probability of observing a
correlation stronger than a relatively sensitive detection
threshold is lower with small sample sizes and the me-
dian observed correlation value with binary data does not
change systematically with sample size. A simple predic-
tion model that relies on samples of varying size performs
better with larger samples. While it is true that this model
does not appear to fully capture human performance in
this task, the relevant point is that the effects of small
sample sizes on perceived correlation do not adequately
explain the empirical findings.

The second experiment reported by Kareev, Lieberman,
and Lev (1997) also does not seem to fully support their
theory. In this case, participants were not blocked by digit
span but were given samples of varying size upon which
to base a prediction. The samples were either fully visi-
ble throughout the process or were presented sequentially
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Figure 11: The prediction accuracy as a function of the
actual correlation and the model’s memory window size.

and were unavailable in formulating the prediction. In
this case, the variables were real-valued, rather than bi-
nary. The results indicated that when samples were ab-
sent, there was better performance with the small samples
than with the medium or large ones. But when the samples
were present, performance increased with sample size.
This latter result is inconsistent with the prediction that
small samples should statistically magnify correlations. If
that were true, larger samples would lead to worse perfor-
mance, especially if the samples are present. The fact that
participants viewing sequential samples performed better
with smaller ones is indeed interesting, but cannot be ex-
plained by a statistical property of sample size itself.

5 Cochran, McDonald, and Parault
(1999)

Much of the empirical support for the less-is-more hy-
pothesis derives from the study of American Sign Lan-
guage (ASL). Newport (1990) observed that late learners
of ASL tend to make more morphological errors in the
production of verbs than do early learners. While interest-
ing, it is not clear to what this finding should be attributed.
The problems incurred by late learners could be due to de-
activation of a language acquisition device, greater cogni-
tive capacity, different types or degrees of exposure, or a
variety of other factors. Cochran, McDonald, and Parault
(1999) sought to provide empirical evidence supporting
the idea that cognitive limitations can actually lead to bet-
ter learning of ASL verbs. They conducted three exper-
iments in which participants unfamiliar with ASL were

taught some sentences and then tested in their ability to
produce either the same or novel ASL sentences.

In the first two experiments, participants were taught
16 verbs. Each verb was encountered in the context of a
single sentence, in which either the subject was “I” and
the object was “you”, or vice-versa. Six of the verbs used
congruent agreement, in which the direction of the sign
was from the verb’s subject (either the signer or the ad-
dressee) to the verb’s object. Two of the verbs used incon-
gruent agreement, in which the direction of the sign was
from object to subject. Four nonagreement verbs required
a static direction of motion, which was either always away
from or always toward the signer. The last four verbs had
a direction of motion aligned vertically, either up or down.

Participants were exposed to each verb in a single con-
text, with half of the verbs in each condition using the
subject “I” and half using the subject “you”. The 16 study
sentences were observed three times in the first experi-
ment and eight times in the second experiment. In order to
place a load on working memory, half of the participants
performed a tone-counting task during training. This was
known as the load condition. Participants were then tested
on the 16 familiar sentences as well as the 16 novel sen-
tences created by reversing the subject and object.

Cochran, McDonald, and Parault (1999) found that par-
ticipants in the no-load condition produced the familiar
sentences better overall and performed better on famil-
iar and novel non-agreement verbs. However, partici-
pants in the no-load condition did not perform as well
on the agreement verbs in novel sentences. They were
much more likely to produce the sign in the same direction
that they learned it, rather than reversing the direction in
the new context. This was taken as evidence that “adults
learning under normal conditions were failing to learn the
internal structure of the language and were therefore lim-
ited in their ability to generalize to new contexts” (p. 30).

However, an alternative reading of the data is that par-
ticipants in the load condition were simply not learning as
well and performed more randomly during test. Not only
did load participants have more movements in the correct
direction, they produced more verbs with no movement
or, in the first experiment, with movement outside the axis
between the signer and addressee. The fact that load con-
dition participants happened to use the correct movement
more often in novel conditions can be attributed to their
generally more noisy behavior, rather than their having
learned to generalize to novel conditions.

The main problem with these experiments is that par-
ticipants are expected to learn that the movement of cer-
tain verbs should agree with sentence context when there
was no basis for such a generalization in the examples to
which the participants had been exposed. Each verb was
seen in just one context, with just one direction of motion,
and only six of the 16 verbs underwent congruent agree-
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ment. The evidence to which the participants were ex-
posed fully supports the simpler hypothesis: that direction
of motion is an intrinsic, non-inflected part of the sign for
a verb. In fact, this is the correct rule for half of the verbs
used in the experiment. Given the lack of any evidence to
the contrary, it seems much more reasonable for partici-
pants to surmise that ASL permits no agreement, than to
surmise that some verbs have agreement, some have in-
congruent agreement, and some have no agreement. The
results in these experiments are consistent with the hy-
pothesis that participants in the no-load condition learned
this very reasonable rule much better than did participants
in the load condition.

A true test of generalization ability must provide the
learner with some support for the validity of the expected
generalization. Had participants experienced some agree-
ment verbs used with different motions in different cir-
cumstances, they would have some basis for expecting
that agreement plays a role in ASL. A second factor bias-
ing the participants against formulating the desired gener-
alization was that, unlike in ASL, pronouns were explic-
itly produced in all training sentences. Languages with
strong verb inflection, such as Spanish, often drop first-
and second-person pronouns, because they convey redun-
dant information. Because such pronoun drop was not a
feature of the training sentences, learners are more likely
to assume that pronominal information is not redundantly
conveyed in the verb form. In summary, the first two
experiments of this study essentially found that partici-
pants trained to perform one reasonable generalization did
poorly when tested on a different, more complex, gener-
alization.

The third experiment conducted by Cochran, McDon-
ald, and Parault (1999) tested the learning of ASL motion
verbs, comparing participants who were taught to mimic
whole signs to those who were taught to mimic just one
part of each sign, either the form or the motion, at a time.
During training, signs for a certain type of actor moving
in a certain way were paired with a hand movement in-
dicating the path of motion. For some verbs, the motion
sign is produced at the same time as the verb, but for other
verbs they are produced in sequence. During testing, all
verbs were paired with all path signs.

Overall there was no difference in performance on the
studied or the novel signs between the “whole” and “part”
learners. There was an unexplained tradeoff, in that whole
learners did better if the parts of the new sign were to be
performed sequentially and worse if they were to be per-
formed simultaneously. The only other difference was the
marginally significant tendency for whole-practice partic-
ipants to produce more frozen signs,8 which could be a
cause or effect of the other difference. If anything, this

8A frozen sign was a new sign that contained an unnecessary part of
a previously studied sign.

study seems to provide strong evidence that learning in-
dividual parts of signs is not, overall, of significant ben-
efit. Although whole-sign learners produced more frozen
signs, they performed better in other respects, balancing
the overall performance. Somewhat disturbingly, how-
ever, more participants were thrown out for inadequate
performance or unscorable data from the part-learning
group. One person in the whole-sign condition was
thrown out for unscoreable data and 9 people in the part-
sign condition were replaced, three for bad performance
and two for unscoreable data. Across the three experi-
ments, three participants were discarded from the no-load
and whole-sign conditions for performance or scoreabil-
ity reasons, compared with 12 participants in the load and
part-sign conditions. In experiments of this sort involving
a direct comparison between training methods, eliminat-
ing participants for performance reasons during training
has the clear potential to bias the average testing perfor-
mance. If participants must be removed from one con-
dition for performance reasons, an equal number of the
worst performers in the other conditions should be re-
moved as well, although this still may not fully eliminate
the bias.

6 Kersten and Earles (2001)

Kersten and Earles (2001) conducted three language
learning experiments which compared learning in a staged
input condition to learning in a full-sentence condition. In
each experiment, participants viewed events in which one
bug-like object moved towards or away from another, sta-
tionary, bug-like object. In the full-sentence condition,
each event was paired with the auditory presentation of
a three-word sentence. The first word corresponded to
the appearance of the moving bug and ended in “–ju”.
The second word described the manner of motion—either
walking with legs together or alternating—and ended
in “–gop”.9 The third word described the direction of
walking—towards or away from the stationary bug—and
ended in “–tig”.

In the first two experiments, half of the participants
heard complete sentences for the whole training period.
The other participants initially heard just the first (object)
word for a third of the trials, then the first two words, and
finally all three words. In the testing period, participants
were shown two events that varied on a single attribute
and heard either an isolated word (corresponding to the
manipulated attribute) or a sentence. They were to iden-
tify the event that correctly matched the word or sentence.

The most important finding in these experiments was
significantly better performance, overall, for participants

9In the first experiment, some participants heard object-manner-path
word order and others heard object-path-manner.
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in the staged input condition. Kersten and Earles inter-
preted this as evidence in favor of the less-is-more hy-
pothesis. However, one should exercise some caution in
drawing conclusions from these experiments. Although
there was an overall advantage for starting small, if one
tests performance on object words, manner words, and
path words independently, the effect is only significant for
object words. Thus, the results are consistent with the hy-
pothesis that starting small was only beneficial in learning
the meanings of the object words, i.e., those words trained
in isolation for the first third of the trials.

Kersten and Earles sought to rule out a slightly differ-
ent, but equally viable, hypothesis—that the effect relies
on the fact that the object words, as opposed to manner
or path, were learned first. Therefore, in the third exper-
iment, participants in the staged condition first heard the
last (path) word, then the last two words (manner-path),
and finally all three words. Again there was a signifi-
cant overall advantage for the staged input condition. In
this case, path words were learned better than object and
manner words in both conditions. Although the overall
advantage for the starting small condition reached signif-
icance, none of the tests isolating the three word types
were significant. These results therefore do not rule out
the hypothesis that participants in the staged input con-
dition were only better on the words trained in isolation.
Nevertheless, it is possible that these effects would reach
significance with more participants.

The third experiment also added a test of the partici-
pants’ sensitivity to morphology. Novel words were cre-
ated by pairing an unfamiliar stem with one of the three
familiar word endings (–ju, –gop, or –tig). Each word was
first paired with an event that was novel in all three impor-
tant dimensions. Participants were then shown a second
event that differed from the first in a single dimension and
were instructed to respond “Yes” if the second event was
also an example of the new word. In other words, partic-
ipants responded “Yes” if the two events didn’t differ on
the feature associated with the word ending. Kersten and
Earles again found a significant advantage for the starting
small condition.

However, there is some reason to question the results
of this experiment. With the path-word ending, there was
clearly no difference between the two conditions. In three
of the four other conditions, participants performed below
chance levels, significantly so in one of them. The finding
of significantly below chance performance leads one to
suspect that participants may have been confused by the
task and that some participants may have incorrectly been
responding “Yes” if the events did differ on the feature
associated with the word ending.

Even if we accept that there was an across-the-board
advantage for the staged input condition in these exper-
iments, we should be cautious in generalizing to natural

language learning. The language used in this study was
missing a number of important features of natural lan-
guage. Word order and morphology were entirely redun-
dant and, more importantly, conveyed no meaning. Words
always appeared in the same position in every sentence
and were always paired with the same ending. In this
simple language, there wasn’t a productive syntax or mor-
phology, just a conventional word order. Participants were
thus free to use strategies such as ignoring word order and
morphological information, much as they learned to ig-
nore meaningless details of the events.

Participants in the full sentence condition were there-
fore at a potential disadvantage. Any effective, general
learning mechanism in a similar situation would devote
time and resources to testing the information carried in all
aspects of the events and sentences, including morphol-
ogy and word order. In this case, those features happened
to convey no additional information beyond that provided
by the word stems themselves, placing participants who
paid attention to word order and morphology at a dis-
advantage. However, these factors play critical roles in
shaping the meaning of natural language sentences, and
devoting time and resources to learning them is useful,
and even necessary. The staged input learner, on the other
hand, will have traded off exposure to syntax for more
exposure to individual words and their meanings, which
is not clearly advantageous. A stronger test of the im-
portance of staged input would be to measure comprehen-
sion or production of whole, novel sentences in a language
with some aspects of meaning carried exclusively by syn-
tax and morphology.

Perhaps tellingly, some studies cited by Kersten and
Earles comparing children learning French in immersive
programs with and without prior exposure to more tradi-
tional, elementary French-as-a-second-language courses
found either no difference or an advantage for children
in the purely immersive programs (Shapson & Day, 1982;
Day & Shapson, 1988; Genesee, 1981). Although these
studies may not have adequately controlled for age of ex-
posure, intelligence, or motivational factors, it certainly
is suggestive that staged input may be less effective than
immersion in learning natural languages.

A final point of criticism of the Kersten and Earles
(2001) paper is their desire to equate the effects of staged
input with those of internal memory limitations. There
is little reason to believe that these two factors will have
similar effects. Teaching the meanings of isolated words
is bound to be helpful, provided that it is only a supple-
ment to exposure to complete language, is relatively noise
free, and makes up a relatively small percentage of lin-
guistic experience. However, memory limitations do not
result in the same simple pairing of words and their mean-
ings. At best, memory limitations have the effect of pair-
ing isolated words or phrases to noisy, randomly sampled
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portions of a complex meaning. The actual part of the
complex meaning contributed by the isolated word may
be partially or completely lost and some extraneous in-
formation may be retained. Learning the correct pairings
of words to meanings is no easier in this case than when
faced with the full, complex meaning.

A more appropriate, though still not entirely sufficient,
test of the benefit of memory limitations in the context of
Kersten and Earles’s design would be to test randomly se-
lected words in the isolated word condition, rather than
always the first or last word of the sentence. These should
be paired with scenes with randomly selected details, such
as the identity of the moving object or the location of the
stationary object, obscured. Furthermore, tests should not
be performed on familiar sentences but on novel ones, as
the potential problem in starting with complete sentences
is that adults will memorize them as wholes and will not
generalize well to novel ones. It would be quite inter-
esting if initial training of this form, which is more like
the presumed effect of poor attention or working mem-
ory, was beneficial in the comprehension or production of
novel sentences.

The actual claim of Newport’s less-is-more hypothe-
sis does not concern staged input. It is that memory or
other internal limitations are the key factor in enabling
children to learn language more effectively. Evidence for
or against the benefit of staged input should be clearly dis-
tinguished from evidence concerning the effect of internal
cognitive impairments.

7 General Discussion

We believe that studying the way in which connectionist
networks learn languages is particularly helpful in build-
ing an understanding of human language acquisition. The
intuition behind the importance of starting with properly
chosen simplified inputs is that it helps the network to fo-
cus immediately on the more basic, local properties of the
language, such as lexical syntactic categories and simple
noun-verb dependencies. Once these are learned, the net-
work can more easily progress to harder sentences and
further discoveries can be based on these earlier represen-
tations.

Our simulation results indicate, however, that such ex-
ternal manipulation of the training corpus is unnecessary
for effective language learning, given appropriate training
parameters. The reason, we believe, is that recurrent con-
nectionist networks already have an inherent tendency to
extract simple regularities first. A network does not begin
with fully formed representations and memory; it must
learn to represent and remember useful information under
the pressure of performing particular tasks, such as word
prediction. As a simple recurrent network learns to rep-

resent information about an input using its hidden units,
that information then becomes available as context when
processing the next input. If this context provides impor-
tant constraints on the prediction generated by the sec-
ond input, the context to hidden connections involved in
retaining that information will be reinforced, leading the
information to be available as context for the third input,
and so on.

In this way, the network first learns short-range depen-
dencies, starting with simple word transition probabilities
for which no deeper context is needed. At this stage, the
long-range constraints effectively amount to noise which
is averaged out across a large number of sentences. As the
short-dependencies are learned, the relevant information
becomes available for learning longer-distance dependen-
cies. Very long-distance dependencies, such as grammat-
ical constraints across multiple embedded clauses, still
present a problem for this type of network in any training
regimen. Information must be maintained across the inter-
vening sequence to allow the network to pick up on such
a dependency. However, there must be pressure to main-
tain that information or the hidden representations will
encode more locally relevant information. Long-distance
dependencies are difficult because the network will tend
to discard information about the initial cue before it be-
comes useful. Adding semantic dependencies to embed-
ded clauses aids learning because the network then has
an incentive to continue to represent the main noun, not
just for the prediction of the main verb, but for the predic-
tion of some of the intervening material as well (see also
Cleeremans et al., 1989).10

It might be thought that starting with simplified inputs
would facilitate the acquisition of the local dependencies
so that learning could progress more rapidly and effec-
tively to handling the longer-range dependencies. There
is, however, a cost to altering the network’s training en-
vironment in this way. If the network is exposed only to
simplified input, it may develop representations which are
overly specialized for capturing only local dependencies.
It then becomes difficult for the network to restructure
these representations when confronted with harder prob-
lems whose dependencies are not restricted to those in the
simplified input. In essence, the network is learning in
an environment with a nonstationary probability distribu-
tion over inputs. In extreme form, such nonstationarity
can lead to so-called catastrophic interference, in which
training exclusively on a new task can dramatically impair

10It should be pointed out that the bias towards learning short- be-
fore long-range dependencies is not specific to simple recurrent net-
works; backpropagation-through-time and fully recurrent networks also
exhibit this bias. In the latter case, learning long-range dependencies is
functionally equivalent to learning an input-output relationship across a
larger number of intermediate processing layers (Rumelhart et al., 1986),
which is more difficult than learning across fewer layers when the map-
ping is simple (see Bengio et al., 1994; Lin et al., 1996).
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performance on a previously learned task that is similar to
but inconsistent with the new task (see, e.g., McClelland,
McNaughton, & O’Reilly, 1995; McCloskey & Cohen,
1989).

A closely related phenomenon has been proposed by
Marchman (1993) to account for critical period effects in
the impact of early brain damage on the acquisition of
English inflectional morphology. Marchman found that
the longer a connectionist system was trained on the task
of generating the past tense of verbs, the poorer it was
at recovering from damage. This effect was explained in
terms of the degree of entrenchment of learned represen-
tations: As representations become more committed to a
particular solution within the premorbid system, they be-
come less able to adapt to relearning a new solution after
damage. More recently, McClelland (2001) and Thomas
and McClelland (1997) have used entrenchment-like ef-
fects within a Kohonen network (Kohonen, 1984) to ac-
count for the apparent inability of non-native speakers of
a language to acquire native-level performance in phono-
logical skills, and why only a particular type of retraining
regimen may prove effective (see also Merzenich et al.,
1996; Tallal et al., 1996). Thus, there are a number of
demonstrations that connectionist networks may not learn
as effectively when their training environment is altered
significantly, as is the case in the incremental training pro-
cedure employed by Elman (1991).

There has been much debate on the extent to which
children experience syntactically simplified language
(see, e.g., Richards, 1994; Snow, 1994, 1995, for discus-
sion). While child-directed speech is undoubtedly marked
by characteristic prosodic patterns, there is also evidence
that it tends to consist of relatively short, well-formed ut-
terances and to have fewer complex sentences and sub-
ordinate clauses (Newport, Gleitman, & Gleitman, 1977;
Pine, 1994). The study by Newport and colleagues is in-
structive here, as it is often interpreted as providing evi-
dence that child-directed speech is not syntactically sim-
plified. Indeed, these researchers found no indication that
mothers carefully tune their syntax to the current level of
the child or that aspects of mothers’ speech styles have
a discernible effect on the child’s learning. Nonetheless,
it was clear that child-directed utterances, averaging 4.2
words, were quite unlike adult-directed utterances, av-
eraging 11.9 words. Although child-directed speech in-
cluded frequent deletions and other forms that are not
handled easily by traditional transformational grammars,
whether or not these serve as complexities to the child is
debatable.

If children do, in fact, experience simplified syntax, it
might seem as if our findings suggest that such simplifi-
cations actually impede children’s language acquisition.
We do not, however, believe this to be the case. The sim-
ple recurrent network simulations have focused on the ac-

quisition of syntactic structure (with some semantic con-
straints), which is just a small part of the overall language
learning process. Among other things, the child must also
learn the meanings of words, phrases, and longer utter-
ances in the language. This process is certainly facili-
tated by exposing the child to simple utterances with sim-
ple, well-defined meanings. We support Newport and col-
leagues’ conclusion that the form of child-directed speech
is governed by a desire to communicate with the child and
not to teach syntax. However, we would predict that lan-
guage acquisition would ultimately be hindered if particu-
lar syntactic or morphological constructions were avoided
for extended periods in the input to either a child or adult
learner.

But the main implication of the less-is-more hypothesis
is not that staged input is necessary, but that the child’s
superior language learning ability is a consequence of the
child’s limitations. This might be interpreted in a variety
of ways. Goldowsky and Newport (1993), Elman (1993),
Kareev, Lieberman, and Lev (1997), and Cochran, Mc-
Donald, and Parault (1999) suggest that the power of re-
duced memory is that it leads to information loss which
can be beneficial in highlighting simple contingencies in
the environment. This, it is suggested, encourages ana-
lytical processing over rote memorization. We have ar-
gued, to the contrary, that in a range of learning proce-
dures, from simple decision making models to recurrent
connectionist networks, such random information loss is
of no benefit and may be harmful. Although it sometimes
has the effect of isolating meaningful analytical units, it
more often destroys those units or creates false contigen-
cies.

Another take on the less-is-more hypothesis is that a
learning system can benefit by being differentially sensi-
tive to local information or simple input/output relation-
ships. This we do not deny. In fact, it seems difficult to
conceive of an effective learning procedure that is not bet-
ter able to learn simple relationships. A related argument
is that when the mapping to be learned is componential,
a learning procedure specialized for learning such map-
pings, as opposed to one specialized for rote memoriza-
tion, is to be preferred. This, too, we support. However,
we suggest that neural networks—and, by possible impli-
cation, the human brain—are naturally better at learning
simple or local contingencies and regular, rather than arbi-
trary, mappings. But this is true of learning in experienced
networks or adults, just as it is true of learning in random-
ized networks or children. The general architecture of the
system is the key factor that enables learning of compo-
nentiality, not the child’s limited working memory.

Simulating poor working memory by periodically dis-
rupting a network’s feedback during the early stages of
learning has relatively little effect because, at that point,
the network has not yet learned to use its memory effec-
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tively. As long as memory is interfered with less as the
network develops, there will continue to be little impact
on learning. In a sense, early interference with the net-
work’s memory is superfluous because the untrained net-
work is naturally memory limited. One might say that is
the very point of the less-is-more argument, but it is miss-
ing a vital component. While we accept that children have
limited cognitive abilities, we don’t see these limitations
as a source of substantial learning advantage to the child.
Both are symptoms of the fact that the child’s brain is in
an early stage in development at which its resources are
largely uncommitted, giving it great flexibility in adapt-
ing to the particular tasks to which it is applied.

7.1 Late Exposure and Second Languages

Elman’s (1991, 1993) computational findings of the im-
portance of starting small in language acquisition, as well
as the other studies reviewed here, have been influen-
tial in part because they seemed to corroborate empiri-
cal observations that language acquisition is ultimately
more successful the earlier in life it is begun (see Long,
1990). While older learners of either a first or a sec-
ond language show initially faster acquisition, they tend
to plateau at lower overall levels of achievement than do
younger learners. The importance of early language ex-
posure has been cited as an argument in favor of either
an innate language acquisition device which operates se-
lectively during childhood or, at least, genetically pro-
grammed maturation of the brain which facilitates lan-
guage learning in childhood (Johnson & Newport, 1989;
Newport, 1990; Goldowsky & Newport, 1993). It has
been argued that the fact that late first- or second-language
learners do not reach full fluency is strong evidence
for “maturationally scheduled language-specific learning
abilities” (Long, 1990, p. 259, emphasis in the original).

We would argue, however, that the data regarding late
language exposure can be explained by principles of
learning in connectionist networks without recourse to
maturational changes or innate devices. Specifically, adult
learners may not normally achieve fluency in a second
language because their internal representations have been
largely committed to solving other problems—including,
in particular, comprehension and production of their na-
tive language (see Flege, 1992; Flege, Munro, & MacKay,
1995). The aspects of an adult’s second language that are
most difficult may be those that directly conflict with the
learned properties of the native language. For example,
learning the inflectional morphology of English may be
particularly difficult for adult speakers of an isolating lan-
guage, such as Chinese, which does not inflect number or
tense.

By contrast to the adult, the child ultimately achieves
a higher level of performance on a first or second lan-

guage because his or her resources are initially uncom-
mitted, allowing neurons to be more easily recruited and
the response characteristics of already participating neu-
rons to be altered. Additionally, the child is less hindered
by interference from prior learned representations. This
idea, which accords with Quartz and Sejnowski’s (1997)
theory of neural constructivism, is certainly not a new
one, but is one that seems to remain largely ignored (al-
though see Marchman, 1993; McClelland, 2001). On this
view, it seems unlikely that limitations in a child’s cog-
nitive abilities are of significant benefit in language ac-
quisition. While adults’ greater memory and analytical
abilities lead to faster initial learning, these properties are
not themselves responsible for the lower asymptotic level
of performance achieved, relative to children.

Along similar lines, the detrimental impact of de-
layed acquisition of a first language may not implicate a
language-specific system that has shut down. Rather, it
may be that, in the absence of linguistic input, those areas
of the brain which normally become involved in language
may have been recruited to perform other functions (see,
e.g., Merzenich & Jenkins, 1995, for relevant evidence
and discussion). While it is still sensible to refer to a crit-
ical or sensitive period for the acquisition of language, in
the sense that it is important to start learning early, the
existence of a critical period need not connote language-
acquisition devices or genetically prescribed maturational
schedules.

Indeed, similar critical periods exist for learning to play
tennis or a musical instrument. Rarely if ever does an indi-
vidual attain masterful abilities at either of these pursuits
unless he or she begins at an early age. And certainly in
the case of learning the piano or violin, remarkable abil-
ities can be achieved by late childhood and are thus not
simply the result of the many years of practice afforded
to those who start early. One might add that no species
other than humans is capable of learning tennis or the vi-
olin. Nevertheless, we would not suppose that these abili-
ties rely upon domain-specific innate mechanisms or con-
straints.

While general connectionist principles may explain the
overall pattern of results in late language learning, con-
siderable work is still needed to demonstrate that this ap-
proach is sufficient to explain the range of relevant de-
tailed findings. For example, it appears that vocabulary is
more easily acquired than morphology or syntax, and that
second language learners have variable success in master-
ing different syntactic rules (Johnson & Newport, 1989).
In future work, we intend to develop simulations that in-
clude comprehension and production of more naturalistic
languages, in order to extend our approach to address the
empirical issues in late second-language learning and to
allow us to model a wider range of aspects of language
acquisition more directly.
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7.2 Conclusion

We seem to be in agreement with most proponents of the
less-is-more hypothesis in our belief that the proper ac-
count of human language learning need not invoke the
existence of innate language-specific learning devices.
However, we depart from them in our skepticism that lim-
ited cognitive resources are themselves of critical impor-
tance in the ultimate attainment of linguistic fluency. The
simulations reported here, principally those inspired by
Elman’s language-learning work, call into question the
proposal that staged input or limited cognitive resources
are necessary, or even beneficial, for learning. We believe
that the cognitive limitations of children are only advanta-
geous for language acquisition to the extent that they are
symptomatic of a system that is unorganized and inex-
perienced but possesses great flexibility and potential for
future adaptation, growth and specialization.
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