Chapter 4

Thereevance of network architecture

Perhapsthe most perplexing aspect of connectionist modelingisthe design of network architecture,
by which we mean choices of numbers of units and their connectivity. One reason the choicesin
network design often appear rather arbitrary isthat they areinfluenced both by general connection-
ist principles and by the specific nature of the task at hand. Unfortunately, the general principles
are rarely made explicit, and the effect of particular architectural decisions on different aspects of
network behavior in a specific task is often ill-understood. H& S attempt to make explicit both the
genera and specific considerations that went into devel oping their model. The general considera-
tionsinvolve atradeoff between ensuring that the network has sufficient capacity and “ power” to
solve the task, while keeping the network as small as possible to stay within available computa-
tional resources. The specific considerations center around attempting to facilitate the ability of the
network to map between two domains, orthography and semantics, which are arbitrarily related.
These two types of concerns influence the number, size, and interconnectivity of unit layers.

The number of unitsin theinput and output layers (e.g. 28 graphemeunits and 68 sememe units)
is determined by the input and output representations chosen for the task. These layers are called
“visible” becausethey make contact with thetraining environment. Thesimplest architecturewould
be to connect input units directly to output units, but such networks have severe computational
limitations that prevent them from learning arbitrary associations (Minsky & Papert, 1969). In
particular, they can only learn tasks that are linearly separable—that is, if each input pattern is
viewed as a point in a state space with adimension for each input unit, for each output unit thereis
some hyperplanein the space that separates the pointsfor patternsfor which the unit must be active
from those for which it must be inactive. The general problem of mapping English orthography
to semantics is not linearly separable using H& S's input representation because the number of
words (input patterns) so greatly exceeds the number of grapheme units (dimensionality of the
hyperplanes). In general, to accomplish tasks that are not linearly separable it is necessary to add
aleast one layer of non-linear “hidden” units between the input and output layers (Ackley et al.,
1985). Because these layersare not part of the input or output, the representationsthey use must be
determined by a general learning procedure. Typically only one hidden layer is used because most
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learning procedures sow down exponentially with the number of intervening hidden layers (see
e.g. Plaut & Hinton, 1987). Such three layer networks are ubiquitous in connectionist modeling
because they can learn any boolean function with enough hidden units (an exponential number
in the worst case, but only a polynomia number for most “reasonable” functions; Denker et a.,
1987).

An important consideration in determining the number of hidden unitsis the relative sizes of
the input, hidden, and output layers.r A hidden layer that is much smaller than the visible layers
must develop a compact code for the input that retains enough information to differentiate the
appropriate outputs (e.g. “encoder” networks (Ackley et al., 1985) and RAAMs (Pollack, 1990)).
In such an architecture the hidden unitstend to accomplish this by capturing theimportant statistical
regularitiesthe input-output mapping (e.g. the largest principle components (Cottrell et al., 1987)),
often resulting in appropriate generalization behavior when the network is presented with novel
input. A hidden layer larger than the visible layers allows dight differences between input patterns
to be magnified by increasing the distance between their representations (in the multi-dimensiona
feature space with one dimension for each hidden unit). Giving quite different representations to
similar inputs is critical when the associations between inputs and outputs are arbitrary, such as
mapping letter strings to meanings. Thus H& S use more intermediate units than grapheme units
(but less than the number of sememe units).

In considering how units are connected, a major architectural distinction is between “feed-
forward” and “recurrent” networks. In afeed-forward network, unit layers can be partially ordered
suchthat unitsreceive connectionsonly from earlier layers. For agiveninput pattern, thisrestriction
allows the final state of each unit to be computed in a single pass through the network, from input
to output. However, for this very reason the extent that unitsin afeed-forward network can interact
is extremely limited. In particular, feed-forward networks cannot devel op attractors because each
unit in the network only updates its state once—the network cannot reapply the unit non-linearities
to clean-up apattern of activity over time.? “ Recurrent” networks have no restrictionson how units
are connected, enabling interactions between units within a layer, and from later to earlier layers.
When presented with input, units must repeatedly recompute their states, because changing the
state of a unit may change the input to earlier units. In thisway, recurrent networks can gradually
settle into a stable set of unit states, called a “fixedpoint” or an “attractor,” in which unit inputs
(and hence outputs) remain constant.® Recurrent networks are particularly appropriatefor temporal

1Some recently developed connectionist learning procedures (e.g. Fahlman & Lebiere, 1990; Sietsma & Dow,
1988) avoid theissue of deciding at the outset how many hidden unitsto use by dynamically adding or removing units
during learning, but the nature of the representations these procedures devel op is not well understood.

2A feed-forward network can be thought of as developing “degenerate’ attractors in the sense that, due to unit
non-linearities, a set of similar input patterns may be “compressed” onto an even more similar set of output patterns.
An output pattern with a neighborhood for which the compression of the input space onto it is localy maximal is
analogousto an attractor in arecurrent network.

3In networks with stochastic units, a fixedpoint is achieved when the probability distribution of activity patterns
remains constant (analogous to the notion of “thermal equilibrium” from statistical mechanics). Also, in addition
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domains, such as language processing (Elman, 1990) and motor control (Jordan, 1986). They are
also moreeffectiveat learning arbitrary associations because the reapplication of unit nonlinearities
at every iteration can magnify initially small state differencesinto quite large ones. Feed-forward
networks require very large weights (and hence very long training time) to map similar inputs to
quite different outputs. As described in the Introduction, unit interactions in a recurrent network
can fill-out and clean-up initially noisy or incomplete patterns—producing behavior in which the
initial pattern of activity “moves’ towards the nearest attractor state.

The existence of attractors for word meanings forms the basis for H& S's explanation of the
co-occurrence of visual and semantic errors in deep dyslexia. In order to allow such attractors
to develop, H& S introduce direct connections among closely related sememe units. However,
these connections only allow pairwise interactions—thereis no way for combinations of sememes
to have direct influences. For example, only the conjunction of “green” and “found-woods’
implies “living’—neither feature alone does. These higher-order semantic “micro-inferences’
(Hinton, 1981a) strengthen the attractors for words (i.e. increase the sizes and depth of their
basins of attraction) by filling-out the initially incomplete semantics generated bottom-up and with
only pairwise interactions. In order to implement them there must be hidden units that receive
connections from some sememe units and send connectionsto others. While H& S could have used
theintermediateunitsfor thispurposeby introducing feedback connectionsto them from semantics,
they choseto introduce a second set of hidden (clean-up) unitsas an approximationto theinfluences
of other parts of the cognitive system on semantics. In addition, separating the groups of hidden
units allows them to specialize differently: one group can directly mediate between orthography
and semantics; the other can make inferences among semantic features.

A final consideration in architecturedesignisthe pattern of connectivity betweenlayersof units.
The capacity of a network is largely determined by its number of connections since the weights
on these connections encode the long-term knowledge used to solve the task. For a given number
of weights, there is a trade-off between using many, sparsely connected units versus using fewer,
densely connected units. As described above, using many units results in a higher-dimensional
representation in a layer, allowing easier discrimination between similar patternsin earlier layers.
However, because each unit isonly sparsely connected to layers providing input, the complexity of
the ditinctionsit can learnislimited.* In particular, as connectivity density isreduced it becomes
harder for individual units to be senditive to globa structure in earlier layers and enforce global
coherencein later layers.

Most connectionist networks use complete connectivity between layers, but this can resultin a

to “point” attractors, recurrent networks can be trained to settle into “limit cycle” (Pearlmutter, 1989) and “ chaotic”
attractors (Skarda & Freeman, 1987), but thistype of behavior isnot directly relevant for our purposes.

4Specificaly, if each sigmoidal unit isviewed as constructing a “ soft” hyperplane decision surface in the space of
activity patternsin earlier layers, sparse connectivity restricts the unit’shyperplane to be paralle to all of the axes for
unitsfrom which it receives no connection.
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large number of connections for networkswith even amoderate number of units. Full connectivity
between layersin the H& S network would have resulted in amost 17,000 connections. Networks
with far more capacity thanisrequiredto learn atask tend to approximatea“table-lookup” strategy
without capturing any interesting structure in the task. Accordingly, H& S chose to include only
arandom quarter of the possible connections between layers, and intra-sememe connections only
among related semantic features, to reduce the network to a computational reasonable size (about
3300 connections). In addition, reduced connectivity made the bottom-up input from orthography
to semanticsrelatively impoverished, particularly because the useful ness of individual intermediate
units can be significantly constrained by the absence of individual G=-I connections when input
letters are represented by single grapheme units. H& S argued that impoverished bottom-up input
to sememe units encouraged reliance on clean-up interactions, resulting in stronger semantic
attractors.

Even among recurrent networks with hidden units that build strong attractors with a minimum
number of connections, there are a vast number of possible network architectures. H& S chose
one and demonstrated that its behavior under damage had interesting similarities with the reading
behavior of deep dyslexics. It isclearly infeasible for computational reasons to implement every
aternative architecture in order to investigate the generality of the H& S results. However, it is
important to gain abetter understanding of the relevance of the particular aspects of their design. In
this chapter, we devel op five alternative architectures which differ from the H& S model in terms of
numbers of hidden units, connectivity density, existence of intra-sememe connections, location of
clean-up pathway, and separation of intermediate and clean-up units. We then systematically lesion
each of these networks and compare their behavior using the response criteriaas well as one of the
phonological output networks developed in the previous chapter, in order to better understand the
impact of architectural differences on behavior under damage.

Following the separate consideration of the general behavior of each architecture, we address a
number of issues regarding moredetail ed aspects of the pattern of correct and impaired performance
shown to varying degrees by al of these networks. Among these issues are item- and category-
specific effects, theimpact of the definitions of visual and semantic similarity, the effects of lesion
severity on the distribution of error types, and the analysis of particular errors and error types.

4.1 Alternative architectures

Figure 4.1 depicts each of the five alternative architectures for mapping orthography to semantics.
We will refer to each network by using an ideographic character that expresses the essential aspects
of itsarchitecture. 1nthese characters, the orthographic unitsand 0=-I connections are not included
as they are the same for al of the networks. The semantic layer is emphasized in bold, and the
relative size of each layer isproportional to the number of unitsit contains. Each major connection
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Figure4.1: Five aternative network architectures for mapping orthography to semantics.
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pathway between layersis depicted by a small arrow. The networks, and the main issues they are
intended to address, are the following:

~— == Intra-sememe connections. This network most cl osely approximates the orig-
ina H&S network, with 40 intermediate units, 60 clean-up units, and 25%
connectivity density. However, it lacks any direct connections among sememe
units, so it will alow usto investigate theimportance of such connections. The
network has 3252 connections.

“S==— Connectivity density. Rather than using 25% connectivity density, the ~%—=
network has complete connectivity between layers (as indicated by the bold
arrows). Lesions to this network will alow us to evaluate the impact of
connectivity density. In order to keep the number of connectionsapproximately
the same asthe other networks, only 10 intermediate unitsand 15 clean-up units
were used. The resulting network has 3134 connections.

——T— Location of clean-up. Thisnetwork has clean-up prior to semantics, at thelevel
of theintermediate units, rather than within semantics. We can thusevauatethe
importance of the location of cleanup on behavior under damage, and whether
theattractorsmust besemanticinorder to producetheH& Sresults. Specifically,
the intermediate units are reciprocally interconnected with 80 clean-up units,
as well as interconnected among themselves. All connection pathways have
25% dengity, for atotal of 3226 connections.

== Separation of intermediate and clean-up units. Seidenberg & McClelland
(1989) propose a framework for mapping among orthography, phonology,
and semantics. Although they only implement a feed-forward version of the
orthography-to-phonology mapping, the ST network is intended to ap-
proximate their proposed orthography-to-semantics pathway. Specifically, 80
intermediate units both send connectionsto the ssmeme units, and receivefeed-
back connections from the sememe units. There are no separate clean-up units,
and so this network allows us to evaluate the importance of having separate
groups of units for this function. The network has 25% connectivity density,
resulting in 3550 connections.

= Hybrid architecture. This network isahybrid of the Seidenberg & McClelland
architecture and the H& S architecture. The network includes both feedback
connections from sememe to 40 intermediate units and a clean-up pathway
with 40 units. Theintermediate unitsare also intra-connected. Our intentionin
devel oping this network wasto investigate whether having these various means
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A 01010110}J 11100000|s 00100001
B 10111001}k 100010111 11000100
c 00101000 L 11000001|u 10100100
D 10111000~ 10000111|v O00OOOO11O0
E 11001000 N 10000010|w 00000111
F 110000000 00111100|x 00001110
¢ 01100001 P 10110000|Y 10000110
H 11001101|¢@ 00110010|z 01000011
I 11001100|rR 10110011

Table 4.1: The assignment of features to letters. The meanings of the features are roughly (1)
contains a vertical stroke; (2) contains a horizontal stroke; (3) contains a curved stroke; (4)
contains a closed part; (5) horizontally symmetric; (6) vertically symmetric; (7) contains diagonal
stroke; (8) discriminator between otherwise identical letters.

of devel oping attractorswould makethem more robust. With 25% connectivity
density, the network has 3626 connections.

4.2 Thetask

Thetask of each network isto generatethe semanticsand phonol ogy of each of the 40 wordsused by
H& S when presented with its orthography. The representations of semantics and phonology isthe
sameaswasdescribed in Section 3.1.1. However, orthography isrepresented somewhat differently,
in order to be consistent with related research using other words (described in Chapter 6). Instead
of using a separate unit for each possible letter at a position, we describe each letter in terms of a
distributed code of eight features, shown in Table 4.1. The set of features was designed to ensure
that visually similar letters (e.g. E and F) have similar representations, while keeping the number
of features to a minimum. Since the H& S word set has some four-letter words, a total of 32
“orthographic” units will serve astheinput layer of each network.

4.3 Thetraining procedure

Each input network was trained in the same way as the H& S network, with two differences. The
first isthat, as described in Section 3.1.3, the network was allowed to run for eight instead of seven
iterations. The second difference is that the orthographic input presented to each network was
corrupted by independent gaussian noise with mean 0.0 and standard deviation 0.1. Section 3.2.2
explains how training with noisy input encourages the network to develop more robust attractors.
Training continued until each network could activate the correct semantic features for each word
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to within 0.1 of its correct value. For each network, the following number of sweeps through the
set of words was required:

Network Sweeps

— /= 2640
S=- 3625
——c T 14008
T 7302
—“=I= 4083

Training required a few thousand sweeps for al but the " network. The reason that this
latter network took so much longer is that it lacks any interactions among sememe units, so these
units cannot clean themselves up into near-binary responses. They must rely on the clean-up at the
intermediate level to eliminate the influences of noise and drive them appropriately. Driving units
into binary responses using only feed-forward connections typically involves traversing down the
bottom of along, shallow ravinein weight space, which requires many sweeps through thetraining
set (see Plaut & Hinton, 1987).

Once each input network had learned to correctly map from orthography to semantics, the
phonological output networks developed in Chapter 3 were combined with separate instances of
each. The weightsin the output networks were then allowed to tune themselves while the weights
in each input network were held fixed. After thisfinal training, which took at most a few hundred
additional training sweeps, each combined network would correctly derive the phonology (and
semantics) of each word from its orthography.

4.4 The effects of lesons

Twenty instances of lesions of arange of severity were applied to the main sets of connections
in each input network in isolation, as well as to each network combined with the nolP and IP
phonological output networks. Correct, omission, and error responses were accumulated using
the response criteria for the isolated networks, and using a minimum response probability of 0.6
for the combined networks. Each error response was categorized in terms of its visual, semantic,
and phonological similarity to the stimulus. The percentages of overall correct responses and
distributions of error types were then determined for each network. We only present datausing the
output network without i ntra-phoneme connections because the only differencesbetween itspattern
of results and that using the I P network are those previously described in Chapter 3. For each input
network, we will examineitslesion resultsin light of the issues that motivated its development.
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441 The :@E networ k

Themain purposeof the ™ —_network isto eval uate theimpact of intra-sememe connections,
which were arather inelegant aspect of the original H& S architecture. However, the network also
differsfrom the original network in its use of a distributed orthographic code and in being trained
with noisy input, so these manipulations must be taken into account in interpreting the data.
Figure 4.2 presents the lesion datafor the —  —_ network. First consider the data using
the response criteria (at the top of the figure). It isinteresting to compare these results with those
for the replication of the original network (Figures 3.9 and 3.10, pp. 63 and 64). In termsof correct
performance, the —  — is more robust overall, presumably because training with noisy
input fosters stronger attractors, as was shown in Chapter 3. Surprisingly, 0=-I lesions are more
debilitating than I=-S lesions, and C=-S lesions are less debilitating than in the origina network,
violating the genera tendency for damage closer to semantic to be more disruptive than more
distant damage. This result may be due to the additional richness of the distributed orthographic
code, allowing greater reliance on the direct pathway, particularly the portion nearest the input.
The distributions of error types are quite smilar for the two networks. Visua errors are most
prevalent for “early” lesions (to 0=-I) while semantic errors occur most for “late” lesions (to
I=S, S=C and C=-S). This progression can be quantified in the following way. We compute
the ratio of semantically similar errorsto visually smilar errors and compare it with the * chance”
ratio for word pairs chosen randomly from the word set (0.498), The ratio of the observed and
chance ratios provides a measure of the “semantic bias’ in the errors produced by lesions at each
location. Ratios greater than 1.0 indicate that the network is biased towards semantic as compared
with visual similarity. For the — “— network, the ratios are 0=I: 1.04 I=>S: 2.47, S=C:
4.02, C=3: 4.82. Thus 0=T lesions produce little bias of visua vs. semantic similarity in errors,
while lesions closer to semantics show a strong bias towards semantic similarity. However, both
“early” and “late’ lesions produce a mixture of error types. In fact, the ratio of the observed
error rates with that of “other” errorsis at least three times the chance value (and often much
greater) for all error types and lesion locations using both the response criteriaand the nol P output
network. The ™  ~— network shows a stronger tendency to produce visual errors and also
errors unrelated to the stimulus than the H& S replication network. While both networks produce
high rates of mixed visua-and-semantic errors, the rates for the = *——_ network are not
above those predicted from the independent rates of visual errors and semantic errors (except for
C=S lesions). Thisis mostly due to the high rates of semantic errors. Overal, intra-sememe
connections (and orthographic representation) effect the quantitative but not qualitative results.
A comparison of the data using the phonological output network with the corresponding data for
the H& S replication network (Figures 3.7 and 3.8, pp. 60 and 62) aso shows a sSimilar pattern
of results for the two input networks. While an additional replication of the H& S results using a
different input representation and no intra-sememe connections is reassuring, the main role of the
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— == network is to serve as a basis of comparison for the other networks.

Oneimportant comparison between networksisthe extent that their direct pathways can convert
fromvisual to semantic similarity by themselves. In particular, therepresentationsat thelevel of the
intermediate layer can be thought of as finding acompromise or “splitting the difference” between
the visual similarity of the input and the semantic similarity of the output. We would like a way
of comparing the nature of this compromise for different networks. More generally, it would be
informativeto have a measure of the extent that the representationsin different parts of a network,
or at different times during settling, are structured visualy vs. semantically. Oneway to do thisis
to run the network and determine the pattern of activity that represents each word at a given layer
and iteration. We can then compute the similarity matrix for these representations—that is, the
set of proximity values for all pairs of patterns. If the representations are structured semantically,
their pairwise proximities should approximate those among the actual semantic representations
(shown in Figure 2.7, p. 36). Thus the degree of correlation of the two sets of proximity values
provides a numeric measure of the extent that the patterns of activity for each word at a given
layer and iteration are structured semantically (and smilarly for visua structure). In addition,
comparing graphical displays of the similarity matrices for the word representations at different
layers and iterations (and with that for the semantic representations) provides a visual impression
of the extent that the network has succeeded in organizing the words semantically at various points
in processing.

Figure 4.3 presents the similarity matrices for the representations of words at various points
in the operation of the —  "——_ network: at the intermediate layer at iteration 1, and at the
semantic layer at iteration 2 (when input first arrives from the direct pathway) and at the semantic
layer at iteration 4 (when clean-up has its first influence). In addition, the figure displays the
correlation of these matrices with those for the input (visual) and output (semantic) representations.
The first thing to notice is that the network converts from visual to semantic similarity gradually.
This is reflected both in the way that the visual appearance of successive matrices increasingly
approximates the appearance of the matrix for the final semantic representations, and more directly
in the shift in the visua and semantic correlation coefficients.® Indeed, most of the off-diagonal
high proximity values in the matrix for the intermediate representations (at the top) arefor visually
similar word pairs (e.g. PORE/PORK, RAM/PAN). Interestingly, the matrix for iteration 2 (in the
middle) revealsthat similarity within some categories—-nhamely, animals, outdoor objects and, to a
lesser extent, foods—already closely matches their final similarity based on the operation of the
direct pathway aone. We will consider category-specific effects more thoroughly later in this
chapter.

SThevisual correlation at iteration 4 issignificantly positive (near 0.3) because the diagonal terms (which areall 1.0
in both matrices) were included in calculating the matrix correlations. The correlation between the similarity matrices
for the visua and semantic representations of words when these terms are excluded is actualy dightly negative
(—0.04), providing additional evidence that visual and semantic similarity are unrelated for the representationswe use.
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442 The =" network

The purpose of the == network isto eval uatethei mpact of connectivity density on performance
under damage. However, in comparing it with the — " ——_ network it is important to keep in
mind that, in order to balance for total number of connections, the == network also has fewer
hidden units.

Figure 4.4 presents the lesion data for this network. Comparing the T and T T
networks in terms of overall correct performance, the “F==— network is dightly more robust,
particularly for lesions to C=-S connections. However, the relative importance of the various sets
of connections are fairly similar in the two networks.

Considering the error response of the two networks, the o= producesamuch higher overall
error rate both using the response criteria and using the phonological output network. However,
since the “# == also has no intra-sememe connections, C=S lesions till produce virtually no
errorsusing the response criteria, reflecting an impairment of the only source of semantic clean-up.
For the remaining locations, the ratio of the rates of all error types with that of “other” errorsis at
least twice the chance value. However, only clean-up lesions produce mixed visual-and-semantic
errors at rates higher than expected from the independent visual and semantic rates. While the
distribution of error types for lesions to the direct pathway are remarkably similar for the two
networks, lesions from semanticsto the clean-up unitsyield aweaker influence of visual similarity
inthe ™ ~—— network. In fact, the biases towards semantic vs. visual s milarity in errors are
lower for lesions of the ™ —x— network (0=-I: 0.73, I=S: 2.13, S=C: 1.95, C=S: 3.30) although
still greater thanthe“chance” valuefor al but 0=-I lesions. Theseeffectsareconsistent withH&S's
claim that reduced connectivity in the — == network impoverishes the bottom-up input to
semantics, placing a stronger emphasis on semantic clean-up. However, the results may aso be
dueto the fact that the extraintermediate unitsinthe — " ——_ network allow thei nput patterns
to be more effectively separated, reducing theinfluence of their (visual) similarity in generating an
output.

Interestingly, reduced connectivity density appears to produce a stronger influence of visual
similarity for S=-C lesions when the phonological output network is used—however, thisis most
likely due to the influence of phonological rather than visual similarity. One possible explanation
is that the complete connectivity of the clean-up pathway in the “S==— network hel ps it build
stronger semantic attractors. Less effective semantic clean-upinthe — ' —— network leadsto
relatively inaccurate patterns of semantic activity, which are often cleaned-up into phonologically
similar responses by the output network.

Figure 4.5 presents the similarity matrices for the word representations, and their correlations
with the visual and semantic similarity matrices, at the intermediate layer at iteration 1, and at
the semantic layer at iterations 2 and 4 in the === network. The similarity matrix for the
intermediate unitsis much sparser than for the = —_ network because representations over
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10 units tend to be more binary than over 40 units, so that the patterns for pairs of words are
either quite similar or nearly orthogonal. Interestingly, the representations are far less visually-
organized, and dightly more semantically-organized, in the “S== network. This differenceis
also reflected in the semantic representations at iteration 2. Apparently, the direct pathway of the
“S=== network is more capable of converting from visual to semantic similarity on its own than
inthe —  —— network. However, close inspection of the similarities within categories (e.g.
indoor objects) reveals that the direct pathway is generating representations that are more similar
than their final representations. This follows from the notion that the intermediate representations
of words are more semantically organized but also more binary—the representations minimize fine
semantic distinctions that must be amplified by the clean-up pathway to a greater extent than in the
== network.® In this sense, the = devel ops stronger semantic attractors.

Overal, the “#x network with full connectivity produces a quite similar pattern of errors
(with ahigher error rate) as a network with similar architecture but only 25% connectivity density.
However, thisnetwork al so had far fewer hidden units, and so the rel ative influences of connectivity
density and number of hidden units have not been investigated.

443 The :E networ k

A number of results in this and the previous chapter demonstrate the importance of attractors
in producing errors under damage. One question that arises is whether these attractors must be
semantic. That is, must it be the sememe units that interact to form attractors in order for the
network to produce semantic errors under damage, or would any sort of interaction suffice? To
investigate this issue we developed the ——<—T— network, in which attractors form at the level
of the intermediate units prior to semantics.

Figure 4.6 presents data on the effects of lesions to this network. In terms of overall correct
performance, the network shows the standard pattern that damage to the direct pathway is more
debilitating than damage to the clean-up pathway. However, unlike the — "= network,
the —— T network is less robust to I=>S lesions than to 0=>I lesions, reflecting the lack
of semantic clean-up. On the other hand, comparing I = C lesions with S=-C lesions in the
— =" network suggests that the " network relies more heavily on its clean-up
pathway for correct performance.

The ———"— network producessiightly lower error ratesthanthe ™ " network. The
ratios of the rates of each error type to that of “other” errorsis at least seven times the chance
value using the response criteria, and at |east twice the chance value using the nol P output network
(except for semantic errors after I=-1 lesions, which are not above the chance value). For both

6According to this interpretation, the “# == network should be better than the — *—— network at within-
category forced-choice discriminations after clean-up damage (see Section 2.6.4). However, this prediction has not
been tested.
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output procedures, the mixed visual-and-semantic error rates for all lesion locations are higher
than expected based on the independent rates of visual and semantic errors. Thus the —T
network replicatesthe H& Sresultsfor the most part. Inaddition, thereisan increasing biastowards
semantic similarity in errors as lesions move towards semantics (0=-I: 1.30, I=1I: 2.38, I=C:
252, C=1: 2.83, I=S: 5.02). The —— T network also shows a strong bias towards mixed
visual-and semantic errors with damage to the attractors at the level of the intermediate units. A
clearer explanation of this effect will be possible when we consider the similarity matricesfor this
network. Lesionsto I=-S connections produce very few errors, with those that occur tending to
be semantically related to the stimulus. These lesions do produce a significant number of errors,
however, when an output network is used, due to the presense of phonological attractors.

Unlike networkswith a strictly feed-forward direct pathway, the states of the intermediate units
of the —— T network change throughout the processing of a word. This makes possible a
richer comparison of the conversion from visua to semantic smilarity at both the intermediate
and semantic layers. Accordingly, we present two sets of similarity matrices for the ————
network. Figure 4.7 presents the matrices for the word representations (and their visual and
semantic similarity correlations) at the intermediate layer of the " network at iterations
1, 3, and 5, and Figure 4.8 presents the same information for the semantic layer at iterations 2,
3, and 4. Considering the intermediate layer first, a comparison with the corresponding matrix
for the intermediate layer of the == network (Figure 4.3, p. 80) reveds that the initial
intermediate representations in the ——<—— network remain dightly more visually structured
thaninthe — *—— network. However, cl ean-up in the former network gradually adjusts these
representations to eventually be slightly more semantically than visualy organized. Because an
additional set of connections (I =-S) map these representations onto semantics, they need not
become completely semantically organized at the intermediate layer. Thus, intermediate-level
clean-up allows the representations to find a more even balance between visual and semantic
similarity at the intermediate layer. In contrast, networks with only feed-forward direct pathways
remain much more visually organized at the intermediate layer, and leave to the semantic-level
clean-up more of the work of coverting to semantic smilarity.

The high rate of mixed visual-and-semantic errors produced by lesions at the level of the inter-
mediate layer in the —— T network (compared with, for instance, the — = network)
can be understood as follows. Compromising between visual and semantic similarity is least
problematic for words that can produce mixed errors because the mapping between orthography
and semanticsisleast arbitrary for these words—at least one visually similar word does map to a
similar semantic representation. 1n a network that must accomplish the mapping via one interme-
diate representation, this shared visual and semantic structure makes it easiest to derive adequate
representations for these words. Most words must rely on a clean-up mechanism that separates
visually similar words into quite different representations. Under damage, attractor basins for
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words that can lead to mixed errors tend to survive and “grow,” and are often produced as error
responses. Another way of viewing the high rate of mixed errorsisthat, inthe —— T2 network,
visual and semantic similarity must operate at the same location in the network, making words that
are consistent with both of these metricsmost stable. In contrast, inthe ™ —_ network visual
and semantic influences are more separated—vVisual similarity operates almost exclusively in the
direct pathway while semantic influences occur primarily within the (semantic) clean-up pathway.
This explains why the rate of mixed visual-and-semantic errors in this network is no more than
predicted by the rates of visual and semantic errors occurring independently.

Comparing the similarity matrices for the semantic layer of the T network (Fig-
ure 4.8) with those for the —  ——_ network (Figure 4.3, p. 80), notice that at iteration 2 the
representations in the —— T network (like those at the intermediate layer) remain more vi-
sualy organized. In fact, even by iteration 4 the representations have not become as semantically
organized as in the — " —=_ network, athough they do by the next iteration (not shown).
Thus the conversion from visua to semantic similarity at the semantic layer is more gradual in
the —— T network. To give a more detailed sense of the gradual conversion to semantic
similarity at the intermediate and semantic layers of the T network, Figure 4.9 showsthe
progression of each correlation coefficient across al eight iterations.

Overal, the results for the ——5 T suggest that any attractors that mediate in mapping
between orthography and semantics will show influences of these metrics in the errors produced
under damage. In addition, very few errors are produced without attractors, although correct
performance can be reasonable.” Together with the replication of the mixture of error types for
lesions at or prior to the level at which attractors operate, these results clearly demonstrate the
generadlity of the H& Sresults.

444 The E networ k

H& S argue that a network must have hidden units to map from orthography to semantics, and it
must form attractorsto reproducethe error pattern of deep dyslexic reading. They used two separate
groups of hidden units for these purposes, each carrying out a different function: the intermediate
units generate an initial semantic pattern from orthography, and the clean-up units refine thisinto
the correct semanticsof the appropriateword. However, it ispossibleto eliminatethe clean-up units
and gtill allow the network to form attractors by introducing feedback connections from semantics
to the intermediate units. The resulting ST architecture will allow us to evaluate the impact
of having a separate clean-up pathway that is not directly involved in mapping from orthography.
The network issimilar to the ———— network inthat a s ngle intermedi ate representation must

7In fact, unlike inthe = “—= network, correct performance of the ——T— network is most impaired by
lesionsto the I=-S, suggesting that the existence of attractorsisimportant for cleaning-up the semanticsin producing
correct responses as well as errors.
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medi ate between orthography and semantics, but it differsby having no separate clean-up units. Itis
also similar to the framework for mapping among orthography, phonol ogy, and semantics proposed
by Seidenberg & McClelland (1989), and so will provideinsight into how animplemented recurrent
version of their system might behave under damage.

Figure 4.10 presents the lesion data for the ——=— network. The overall correct performance
of the =TT, network under damageto the direct pathway is quite similar to that of the —— T
network, both being more sensitive to this type of damage than the = ——_ network. In
addition, the —T7—, network islike the ———— network (and unlikethe ™ ~—— network)
in that lesions closer to semantics (I=-S) are more disruptive than more distant lesions (0= 1I).
Lesionsto the feedback connections (S=-I) are much less debilitating than are lesions to any of the
clean-up connection sets in the ———— network, and are about equally debilitating as lesions
toc=>sinthe™ " network.

All three networks show a quite similar rate and distribution of errorsfor 0=-I lesions, except
that the —— o network shows a somewhat lower rate of “other” errors. However, unlike the
—— T network, the =, network produces significant error rates for I=S lesions, with the
errorstending to be semantically related to the stimulus. Lesions to the S=-I feedback connections
produce very few errors, with a high proportion being mixed visual-and-semantic. Thisis quite
similar to the effect of c=S lesionsinthe — *——_ network, and for clean-up lesions in the
—— T network. For both output procedures and each lesion location, the rates of each error
type (relative to that of “other” errors) isat least 2.5 times greater than for errors chosen at random
(except for visual errors with S=-1 lesions), and the rate of mixed visual-and-semantic errorsis
higher than expected from the independent rates of visual errors and semantic errors. Infact, like
inthe ————— network the relative rates of mixed errorsis quite high for lesionsto connections
involved in building attractors (I=-S and S=1I). The biases towards semantic similarity in errors
for each lesion location are 0=1: 1.13, I=-S: 2.78, S=1: 2.92.

The similarity matrices the over iterations 1, 3, and 5 for the intermediate layer of the ==
network, shown in Figure 4.11, are quite similar to those of the —— T network. The inter-
mediate representations in the T, network ultimately become more semantically organized
because they interact directly with the semantic layer, where representations become completely
semantically organized. In this way, feedback connection from semantics make the task of the
I=-S connections somewhat easier.

Figure4.12 showsthe similarity matricesfor representationsat the semantic layer of the =
network for iterations 2 and 4.8 Comparing the matrix for iteration 2 with the corresponding matrix
for the ————=— network (top of Figure 4.8, p. 88), notice that the semantic activity in the
ST network is much more semantically organized before theinfluence of any clean-up. Thisis

8The matrix for iteration 3 is not displayed because it is essentially identical to that for iteration 2. Intermediate
units are not influenced by semantic unitsuntil iteration 3 and so they cannot have new influences on semantic units
until iteration 4.
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true even though the intermediate representations providing input in the two networks are equally
semantically organized. There are twice as many I=>S connectionsin the —LT—, network than
in the ———— network (because it has twice as many intermediate units) and so intermediate
representations can have more effective influence on semantics in the former network. In fact,
by iteration 4 the semantic representations in this network are more accurate than at the same
point in the 57— network, presumably because the intermediate representations are more
semantically organized at the preceding iteration. Thus the semantic units serve as more effective
clean-up than a separate group of clean-up units attached to the intermediate units that must learn
to have semantic influences.

Overall, the success of the —TT—, network in replicating the H& S results demonstrates that
those results do not depend on having a separate set of clean-up units to perform semantic micro-
inferences. Intermediate units can learn both to convey information about orthography and to
interact with semantics to form attractors for word meanings. However, using intermediate units
in this way has implications for the distribution of error types—in particular, the rates of mixed
visual-and-semantic errors.

445 The iEnetwork

Thefinal architecturewewill consider, the — = network, isahybrid betweenthe =~ =
and —T7 networks. The results with the latter network demonstrated how feedback from
semanticscan help theintermediatelayer representationsbecome more semantically organized. Our
intention in investigating the — == network isto determine whether this effect, in combination
with a separate set of semantic clean-up units, would produce stronger semantic attractors.

Figure 4.13 presents the lesion data for the ~— == network. Overall correct performance
after lesions to the direct pathway is much like that inthe — "——_ network, with 0=T lesions
being more debilitating than I =S lesions. Interestingly, lesions to the clean-up pathway are
much less disruptive in the — I network. In addition, even severe lesions to the feedback
connections produce a negligible deficit. This pattern suggests that the redundancy in the type of
clean-up available to the network makes it more robust to this type of damage.

In terms of distributions of error types, the two networks produce quite similar patterns of
errorswith 0=1I lesions, although the error rates of the — == network are dightly higher. In
contrast, I=-S lesions produce fewer errorsin the — == network, but these are more likely to
be semantically related to the stimulus than inthe =~ ——_ network. Both networks produce
very few errors after lesions to the clean-up pathway. The semantic biases in errors for lesion
locations producing a reasonable number of errorsare 0=-I1: 1.16, I=-S: 3.74, C=S: 6.69. The
ratesof al error typesrelativeto “other” errorsare above chancefor all lesion locations, except for
S=-I lesons and for visua errorsfrom C=-S lesions. Also, mixed visual-and-semantic error rates
are higher than predicted by visua and semantic error rates occurring independently at each lesion
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location except for C=-S using the response criteria, and for S=-C using the output network.

Figure4.14 showsthe similarity matrices for theintermediatelayer representations at iterations
1,3,and 5inthe ~ == network. Comparing with those for the ST network (Figure4.11,
p. 93), the == representations are less extreme—starting out less visually organized and
ending up less semantically organized. Thismay reflect the reduced expressiveness of 40 compared
with 80 intermediateunits. However, the general tendency of feedback connectionsfrom semantics
to induce an increasingly semantic organization at the intermediate layer is similar in the two
networks.

Now consider the similarity matrices for the semantic layer representations at iterations 2, 3,
and 4inthe — == network (shown in Figure 4.15), and compare them with the corresponding
matrices for the — ——_ network (Figure 4.3, p. 80). Interestingly, at iteration 2 the represen-
tationsinthe — == network are less semantical ly organized, even though the network has the
same number of intermediate units and connectivity density asthe —  *——_ network. Clearly
the existence of additiona sets of connections has caused the knowledge that produces semantic
organization to be distributed somewhat differently in the — == network. In particular, the
impact of the clean-up units appears to be less—there is less of a difference between iterations
3and 4inthe ™ == network than inthe =~ —— network (where iterations 2 and 3 are
essentially identical). The task of inducing semantically organized representations is split more
evenly between the clean-up and intermediate units in the — == network. This process is
also moregradual thaninthe ™ "—— network—at iteration 4 the semantic representations are
further from their final organizationinthe — == network.

Overdl, the — "= network, which includes aspects of a number of the other networks,
behavesinwaysthat are similar to each of them. Feedback to theintermediate unitsfrom semantics
helps these units become more semantically organized. Additiona clean-up units provides a
redundant mechanism for implementing semantic attractors, making the network somewhat more
robust to damage. However, there seems to be little difference in the strength of the attractorsthat
the — "= network devel ops. In this sense, the strength of attractors developed by a network
may be more afunction of the demands of the task and training procedure (e.g. if noiseis added to
the input) than of the architecture per se.

45 Summary of architecture comparisons

45.1 Generality of the H& Sfindings

There are a number of general conclusions that can be drawn from the properties of this set of
networks. The most important findings are those that concern the generality of the theoretically
critical results obtained by H& S. These fall into two parts. H&S's main conclusion was that all
types of error—visual, semantic, and mixed—occur with all locations of lesions. With one or two
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minor exceptions, concerning lesion sitesthat giveriseto very low absolute error rates, thisfinding
generaizesto al the other networks examined) as well as to lesions to output connections (S=I1p
and Ip=-P, see Section 3.4).

A second finding of H& Swasthat mixed visual-and-semantic errorsoccur morefrequently than
one would expect given the independent rates of visual errorsand of semantic errors. Thisfinding
appearsto be less general than the simple co-occurrence of error types. Thereplication of the H& S
network, using the origina input representation and trained without noise, also exhibits higher
than expected mixed rates (except when using the IP output network, or for lesions to an output
pathway—see Chapter 3). However, among networks using the distributed letter representations
and trained with noise, the effect is only found when the intermediate units are directly involved in

developing attractors—the ———, ~TT— and = =% networks, but not the ™ “——
and “%= networks.

Why might these effects occur? One possibility isthat the —  —— and ~# = networks
form strong semantic attractors using the clean-up pathway, so that maximum visual similarity
effectsoccur at aconsiderably earlier stage of processi ng than maximum semantic similarity effects.
Thus the transformation from visua to semantic smilarity is realized through separable stages.
The networks trained without noise form weaker semantic attractors using the clean-up units, so
that more of the work of mapping visual to semantic similarity is carried out by the direct pathway.
This compresses the stages over which visual and semantic similarity operate, and therefore makes
interactions between them in the stimulus set—the potential for mixed errors—more critical. This
is also true of the networks in which intermediate units are involved in implementing attractors.
In these networks, the attractors lie at a stage where visual and semantic influences cannot be
separated. It should be pointed out that this account is somewhat speculative—the main point is
that the mixed error findings of H& S, while narrowly robust, do not generaize to all lesion sites
of al connectionist networks. It is a consequence of particular characteristics of some network
architectures.

45.2 Thestrength of attractors

At a more general theoretical level, the argument that H& S put forward of the importance of
attractors in the generation of errorsisborne out. The robustness of a network to lesions of a set
of connections, measured by the rate of correct performance, increases with the strength of the
attractors at levels after the locus of damage. At the same time, the rates of explicit errors from
lesions to these connections also rise. 1n essence, the attractors serve to clean-up both correct and
incorrect responses, reducing the number of omissions caused by damage. In contrast, lesions at
or beyond the level of the last attractorsin a network produce a very low rate of overt responses,
both correct and incorrect.

This effect can be seen by comparingthe — ——_ network with the “S==- network. Both
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networks use the same input and output representations, were trained identically, and develop
attractors at the semantic level. However, the overall correct performance and explicit error rates
of the “#x  network are higher thanforthe = ~——_ network for both 0=I and I=>S lesions,
using both the response criteria and the nolP output network. The “S== network devel ops
stronger attractors because its full connectivity between layers makes it more effective than the
~— Y= network at implementing semantic micro-inferences that depend on the interaction of
two or more semantic features on athird. The probability that the involved semantic features will
be appropriately connected to some clean-up unitis 1.0 in the “S=== network but guite small in
the ™ “—— network dueto its 25% connectivity density. The replication of the H& S network,
which it was argued above has weaker semantic attractors than the —  ——_ network, is less
robust overall to lesions of the direct pathway (although the balance between 0=-1I and I=S is
reversed) and has lower explicit error rates.

For the ————— and —T—, networks, correct and error rates are comparable to those of the
— == network for 0=I lesions, which are before the level at which their attractors operate.
However, consider lesions to I =S connections, which are “post-attractor” for the —Tp
network, “within-attractor” for the —T=—, network, and * pre-attractor” for the = T net-
work. Both the correct and error rates are much lower (using the response criteria) for the first two
networks than for the — ——_ network (e.g. I=-5(0.3), correct: 14.1% " and 9.6%
T vs 429% T " errors; 0.2% —— ~oand 1.8% T vs.3.7% " ).
The very low error rate for the post-attractor I=-S lesionsin the —— T network reinforcesthe
arguments presented earlier that the occurrence of explicit errors depends on damaged input being
cleaned-up into an incorrect attractor.

453 Error types

For al networks, error rates are much higher for 0=-I lesions than for I=-S ones, presumably
because the output of the undamaged I=-S connections will be more likely to be closer to aword
representation than will their damaged output. 1n addition, for the networks that have attractors
only at the ssmantic level (H& Sreplication, — -, ~F ), both the absolute and relative
ratesof visual errorsdrop sharply between 0=-I and I=-S lesions, and the absolute and relativerates
of semantic errors climb—the absolute rise is a modest one and limited to the criteria conditions.
This general trend is shown directly in the biases towards semantic vs. visual similarity in errors
(as compared with word pairs chosen at random) as lesions move from “early” to “late” in the
network. These findings are similar to those obtained by H& S and indicate that such networks can
giveriseto the quantitative differencesin the distribution of error types found across deep dysdexic
patients.

9Not surprisingly, the hybrid == network shows hybrid characteristics.
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We now turn to an number of separate issues that concern more detailed aspects of the pattern
of correct and impaired performance shown to varying degrees by all of these networks. These
considerations serve both to verify that the genera effects produced by the networks aren’t due to
idiosyncratic characteristics of the word set or interpretation procedure, and also to demonstrate
that the networks behave like deep dydexics in terms of the pattern of responses after individual
lesions in addition to exhibiting a similar overall pattern of performance when averaged across
lesions.

4.6 Item- and category-specific effects

The small size of the H& S word set raises the possbility that many of the effects arise from
idiosyncratic characteristics of the word set itself, and not to any real systematic relationship
between orthography and semantics. In particular, it is possible that only a handful of words
account for most of the errors. In this section we address the extent that the effects we have
demonstrated are distributed across the entire word set.

Considering correct performance first, Figure 4.16 presents the overall correct rates for indi-
vidual words after lesionstothe — " ——_ network with using both the criteriaand nol P output
network to generate responses. Although there is areasonable amount of variability among words,
it is not the case that some words are always impaired or intact regardless of the type of damage.
The pattern of overal correct performance is somewhat different depending on how output is
generated, although the correlation between the correct rates using the response criteria and those
using the nol P output network is moderate but significant (0.47, p < .005).

Figure 4.16 a so suggests that there may be some systematic differencesin correct performance
across categories. H& S found that words in the “foods’ category were selectively spared after
C=-3(0.4) lesionsin one version of their network. Figure 4.17 presents the correct performance of
the™ “—— network for wordsin each category, separated by lesion location. With wordsasthe
random variable, thereisasignificant main effect of category for lesonsof 0=1 (#'(4,35) = 5.91,
p < .001), I=S (F(4,35) = 3.94, p < .01), and C=-S (F'(4,35) = 3.35, p < .02), but not for
S=C lesions (¥'(4,35) = 1.06). The figure shows that “body parts’ and “outdoor objects’ are
selectively impaired by 0=-I lesions, while “animals’ are selectively preserved by I=-S lesions.
C=-S lesions produce a selective deficit for “outdoor objects.” While there is certainly evidence
that certain sets of connections are differentially important for reading certain categories of words,
none of the selective category effectsinthe ™ ——_ network is as pronounced asthat found by
H&S.

However, particular lesions in some networks can produce quite dramatic category effects
that are even more pronounced than those observed by H& S (see Figure 4.18). For example,
c=5(0.7) lesions in the ““==— network produce a striking selective preservation of “animals’
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and selective impairment of “body parts’ relativeto the other categories, aswell asrelativeto other
lesionsyielding similar overall correct performance, such as I=-5(0.4). Interestingly, the ==
network also shows a selective preservation of “animals’ with c=-5(0.7) lesions, but now “foods’
and “outdoor objects’ rather than “body parts’ are selectively impaired. The nature of the selective
deficits observed after damage appears to have as much to do with the particular characteristics of
individual networks as with the rel ationshi ps among semantic representations. Infact, the selective
preservation of “foods’” found by H& S did not arise in a second network that only differed from
the first initsinitia random weights—a type of variation typically not considered important (but
see Kolen & Pollack, 1991). Clearly moreresearch isrequired to understand these effects.
Turning to aconsideration of item effectsin error responses, we can a so examinethedistribution
of each error type across wordsin the set. Figure 4.19 presents the rates of visual errors for each
word produced by lesionstothe " ——_ network using the criteriato generate responses. Only
four of the words, BED, PIG, RAT, and HIP, produce no visual errorsfor any of thelesions. For the
rest of the words there is a wide range of rates, with the highest being for coT and PORE, both
having about four timesthe average rate. Visual errors are not arising due to only a few words but
are distributed throughout the word set. In fact, there is a significant correlation (0.49, p < .005)
between the observed visua error rates and the expected rates given the distribution of visua
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Figure 4.20: Semantic error rates the — *——_ network for each word, averaged over all
lesion locations and severities|eading to correct performance between 20-80%, using the response
criteria.

similarity throughout the word set. Thus the distribution of visual errorsacrosswordsisrelatively
unbiased with respect to visual similarity.

Semantic errors are somewhat less uniformly distributed. Figure 4.20 presents the rates of
semantic errorsfor each word produced by the — " ——_ network. Nine of the words produce no
semantic errors, while DOG produces amost twice as many as the word with the next highest rate,
GEM. “Outdoor objects’ have a uniformly low rate of semantic errors, while the rates for “body
parts’ are relatively high and distributed throughout the category. While the seven words with the
highest rates account for 56% of the semantic errors, the remaining errors are spread across most
of the remaining words. The correlation of the distribution semantic errorswith that expected from
the semantic similarity of the word set is marginally significant (0.30, p < .06).

In contrast, the network shows a strong bias to produce mixed errors for particular pairs of
words. Figure 4.21 presents the rates of mixed visual-and-semantic errorsfor each word produced
by the — —_ network. Almost half (18) of the words do not produce any mixed errors. Of
the remaining words, the top three (PAN, HIP, and LIP) account for 45% of the errors; the top six,
over 65%. Thereisvirtually no correlation (0.09) between the distribution of mixed errors across
words and the distribution of visua-and-semantic similarity.
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To provide amore compl ete picture of the nature of error responsesin the network, Figure 4.22
displays the frequency of each possible error in the form of a*“confusion matrix.” Semantic and
mixed visua-and-semantic errors consist of squares in one of the 8-by-8 blocks along the main
diagona. Thus the most common semantically related errors among “indoor objects’ are PAN =-
“can” and BED =- “cot”. In general, common errors are not symmetric, although the frequencies of
HIP=“lip” andLIP= “hip” areabout equal. Visual and other errorsarerepresented in other regions
of the matrix. Interestingly, the two most common incorrect responses to BOG are CAT and RAT—
these appear to be visual-then-semantic errors via DOG. We will consider visual-then-semantic
errors more extensively below.

Overdl, the variation of the rates of various types of errors across words demonstrates that the
effectsin error patterns produced under damage do not arise from idiosyncratic characteristics of
afew words. A possible exception is the mixed visual-and-semantic errors—the one theoretically
important topic where the origina H& S findings did not generalize consistently. However, the
considerable degree of variability of error types across categories raises a concern about the use of
these categories in defining semantic similarity. In the next section we address this issue directly.

4.7 Definitions of visual and semantic similarity

Following H& S, and as described in Section 2.6.4, we have considered a pair of words to be
visually similar if they overlap in at |east one letter, and semantically similar if they come from the
same category. These definitions are intended to approximate the criteriaused in categorizing the
reading responsesof patients. However, they are at best only coarse approximations. Our definition
of visual similarity is somewhat more lax than that used for patients, where typically a stimulus
and response must share at least 50% of their letters to be considered a visual error (Morton &
Patterson, 1980). It is more difficult to compare the definitions of semantic similarity as thereis
no accepted formal measure of semantic relatedness that can be applied to patient responses—it
is somewhat a matter of opinion whether a particular incorrect response should be considered a
semantic error. Nonetheless, category membership is as good an approximation to the informal
criteria of semantic relatedness used with patients as the limited word set used in the smulations
alows.

However, itisimportant to realize that | etter overlap and category membership, while providing
intuitive groupings of words, only approximate the actual similaritiesamong the orthographic and
semantic representations used in the simulations. Thiswas seen in the matrix of proximitiesamong
semantic representations (Figure 2.7, p. 36). Words like cup and MuUG are “indoor objects’ and
so are considered semantically related to words like BED and MAT, even though their semantic
representations are actually much more similar to those of most “foods.” Similarly, some word
pairsthat overlap in aletter have quite different representations (e.g. LIME and RAM) while others
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Figure4.22: The confusion matrix for responses of the — “=—"network. Eachrow corresponds
toaparticular word as stimulus. The frequency with which each other word is given asthe response
is represented by the size of the square in the column with the corresponding number (listed at the
top). The off-diagonal squares represent errors—their size is scaled relative to the most frequent
error (PAN = “can”). Thediagonal squaresrepresent correct responses—since correct responsesare
much more common than any particular error, their sizes are scaled relative to the most frequently
correct word (CAT).
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that do not are quitesimilar (e.g. BED and RIB). Because anetwork can only be sensitiveto the actual
similarity among orthographic and semantic representations, it is possible that the distributions of
error types produced under damage are biased by the inadequacies of the use of |etter overlap and
category membership as definitionsfor visual and semantic similarity.

In order to ensure that our results are not biased by the particular definitions of similarity we
used, we reclassified the errors produced by the — ~—— network using criteria for visual and
semantic similarity based on the actual proximity values of each stimulus-response pair. For ease
of comparison, the values of these criteriawere defined so that the incidence of error types among
all word pairs occurring by chance approximated that for the original definitions. Specificaly, a
pair of wordswere considered visually similar if the proximity of their orthographic representations
was greater than 0.55, and semantically similar if the proximity of their semantic representations
was greater than 0.47. While these criteria result in only a 0.5% decrease in the incidence of
visual similarity and a 1.3% increase in the incidence of semantic similarity, they significantly
change the distributions of these similaritiesover word pairs. Thisisbecause proximity isbased on
shared features, so that |etters can resemble other letters without being identical, and words can be
semantically related without being in the same category. Asaresult, thereisonly a0.64 correlation
between the assignment of visua similarity using letter overlap and using the proximity criterion.
The correlation for semantic similarity isonly 0.72. For both, only about three-fourths of the word
pairsthat are similar using the original definitions remain so using the proximity criteria.

Figure4.23 showsthedistribution of error typesfor lesionstothe ™ ——_ network using the
definitionsof visual and semantic similarity based on proximity. Comparingwith the corresponding
resultsusing theoriginal definitions(shownintheright sideof Figure4.2, p. 78), thereisremarkable
similarity in the pattern of results. When the response criteria are used, the only significant
differenceisthat the proximity-based definitionsresult in alower rate of “other” errorsfor lesions
of the direct pathway. Thus many of the error responses that are considered unrelated to the
stimulus when using the origina definitions do actually reflect the influences of visual or semantic
similarity when measured more accurately. However, it should be noted that “other” errors till
occur, as they do in patients. This effect is not apparent when using the nol P output network,
although 0=-I lesions do produce a dightly higher rate of semantic errorswith the proximity-based
definitions. Overall, the similarity of the pattern of results indicates that the use of the original
definitionsfor visual and semantic similarity, in terms of letter overlap and category membership,
does not significantly biasthe results.

4.8 Visual-then-semantic errors

In addition to producing error responses that are directly related to the stimulus either visually or
semantically, deep dyslexicsoccasionally produceerrorsinwhich therelationship between stimulus
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and response is more complex. For example, Marshall & Newcombe's (1966) patient G.R. read
SYMPATHY as*“orchestra.” They considered thisavisual error, SYMPATHY = “symphony”, followed
by a semantic error, SYMPHONY = “orchestra’, and so termed it a “visual-then-semantic” error.
Subsequently, this type of error has been observed in a number of other deep dydexia patients
(see Coltheart, 1980a)—other examples include STREAM = (steam) = “train” by H.T. (Saffran
et a., 1976), FAVOUR = (flavour) = “taste” by D.E. and copious = (copies) = “carbon” by
PW. (Patterson, 1979). Although visual-then-semantic errorsare quite rare, the possibility of their
occurrence at al israther perplexing, and certainly theoretically relevant. We know of no attempt
to give an explanation of them other than Marshall & Newcombe's (1973) remark that they are
"compound mistakes which are a function of misperception plus semantic substitution” (p. 186).
They seem to be generally assumed to arise from combining two separate errors.

Given that visual-then-semantic errors are an acknowledged characteristic of deep dydexic
reading, the question arises as to whether they occur after lesions to our networks. Because the
stimulus and response of a visual-then-semantic error are neither visually nor semantically related,
up until now we would classify such errors as “other.” Hence, we analyzed the “other” errors
produced by the ~— =" network to determine whether some of them are more appropriately
classified as visual-then-semantic. A visual-then-semantic error occurs when the stimulus and
response are unrelated, but there is a third word, which we will call the “bridge,” that is visualy
related to the stimulus, semantically related to the response, and was directly involved in producing
the error. Thislast point is assumed for patient errors because the likelihood of a response being
appropriately related to the stimulus by chance is assumed to be negligible. However, in the
simulations the small size of the word set and high chance rate of visual and semantic similarity
make it necessary to demonstrate that the relation of the presumed bridge word to the stimulus and
response does not arise merely by random selection from the word set.

When using the criteriato generate responses, for each “other” error we identified the potential
bridge word as the one whose semantics had the second-best match to those generated by the
network under damage (the best matching word is the response). If thisword was visually related
to the stimulus and semantically related to the response, we considered the error to be visual-then-
semantic. Of the 114 “other” errors produced by the = — network, 49 (43.0%) satisfied
these criteria(42.0% when using the proximity-based definitions of visual and semantic similarity).
The chance rate of visual-then-semantic errors can be calculated by estimating how often the next-
best matching word would meet the criteria even if it had no influence on the error. Thisrateis
just the chance rate that the bridge is visually related to the stimulus times the chance rate that it
issemantically related to the response, given that the response is neither visually nor semantically
related to the stimulus. Thefirst termisjust the overal rate of visual similarity for word pairs other
than the stimulus and response (29.9%). The rate that the bridge and response are semantically
related by chance is much higher than the overall rate of semantic similarity because the bridge
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word was selected on the basis of how well its semantics match those generated by the network
(which match the response best). We can use as an estimate the rate at which the response and
bridge words are semantically related over all “other” errors produced by the network, which is
83.3%. Thusthe chance rate of visual-then-semantic errorsis approximately 24.9%, which isonly
dightly more than half the observed rate.

When using an output network, itispossiblefor the response generated at the phonological layer
to differ from the best matching word at the semantic layer (even with the output network intact).
Under these conditions we can apply a more conservative, but also more informative, definition
of visual-then-semantic errors. Specificaly, for each error in which the stimulus and response are
unrelated, we can use the best-matching word at the semantic layer as the potential bridge word.
If this word is visually related to the stimulus and semantically related to the response (but not
identical or it would be avisua error), the “other” error is considered to be visual-then-semantic.
It is clear that the bridge word is playing a role in the error because the phonological response
is based solely on the generated pattern of semantic activity, which is most similar to that of the
bridge word. Of the 97 “other” errors produced by lesionstothe —  ~——_ network with the
nol P output network generating responses, 12 (12.4%) satisfy the criteriafor visual-then-semantic
errors. In contrast, only four of the “other” errors (4.1%) involve semantic similarity followed by
visual/phonological similarity (e.g. cow = (pig) = “pan”). Although the chance rate of thistype
of error isthe same as for visual-then-semantic errors, it is observed much less frequently, both in
patients and in the network.

The 12 visual-then-semantic errors produced by the network are listed in Table 4.2. Notice
that for some of the errors (e.g. BOG = (pig) = “ram”) the generated semantics match those of
the bridge word well enough to satisfy the response criteria (for a visual error). Even so, the
semantics are sufficiently inaccurate that the (intact) output network produces a semantic error. All
but one of the visual-then-semantic errorswere caused by damage to the direct pathway, with most
arising from 0=-I lesions. This distribution across lesion locations very closely approximates the
distribution of visual errorsfor the —  —— network when usi ng the response criteria (see top
of Figure 4.2, p. 78).1° This makes sense given that, under our definition, visual-then-semantic
errors consist of avisual confusion in the input network followed by a semantic confusion in the
output network. In a sense, we interpret visual-then-semantic errors as visual errors gone awry
under semantic influences. Because the damaged input network fails to clean up the visual error
completely, the output network is given somewhat corrupted input. Even though itisintact, it may
misinterpret thisinput as a semantically related word.

101n contrast, when using an output network to generate responses clean-up lesions produce about the same number
of visua errors as lesions to the direct pathway. Since in this situation visual-then-semantic errors must consist of a
visua error followed by a semantic error, their relative distribution across lesion locations may provide a more direct
measure of the distribution of true visual errors. Thus, the pattern of visual-then-semantic errors provides further
evidence that many of the visual error produced when using an output network are actualy due to influences of
phonological similarity.
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Visual-then-Semantic Errors (nol P output network) \

Stimulus | Bridge prox | Response | Lesion
BOG DOG 0.85 | RAT 0=1I(0.1)
BUG NUT 0.68 | LIME 0=I1(0.15)
BOG PIG 0.91* | RAM 0=1(0.2)
BONE HOCK  0.94* | HAM 0=1(0.25)
TOR HOCK  0.78 | HAM 0=1(0.25)
CAT PARK  0.64 | ROCK 0=-1(0.25)
Cow CAN 0.79 | PN 0=1(0.25)
GEM LEG 0.79 | BONE 0=1(0.3)
HIP HAWK 0.69 | RAT 1=5(0.25)
BED BONE  0.80* | HIP 1=5(0.3)
RAT GUT 0.65 | LEG I1=35(0.4)
HOCK BONE 0.70 | RIB S=-C(0.5)

Table 4.2; The visual-then-semantic errors produced by the =~ ——_ network with responses
generated by the nol P output network. “Bridge” istheword whose semantics match those produced
by the network best (with proximity prox). Bridge words with proximities satisfying the response
criteriaare marked with asterisks—these would have resulted in visual errors.

This interpretation raises the possibility of reclassifying some errors into three additional
compound types based on the potential relationships of the bridge word to the stimulus and
response: visual-then-phonological (e.g. PARK = (pork) =- “pore”), semantic-then-phonological
(e.0. ,ARK = (bog) = “bug”), and semantic-then-semantic (e.g. PARK = (bog) = “dune’). Visual-
then-phonological errors would typically be classified as visua errors, but could be “other” (e.g.
GUT = (cat) = “can”), semantic-then-phonol ogical errorswould usually be* other,” and semantic-
then-semantic errors would be, by definition, semantic. The classification of errorsin which the
bridge word is both visually/phonologically and semantically related to the stimulus or response
is somewhat ambiguous. To avoid confusion we restrict our analysis to errorsthat do not involve
bridge words with mixed similarity. Applying these definitionsto errors produced by lesionsto the
— " network with the nol P output network, 5.0% of visual errorsand 7.8% of other errors
are visual-then-phonological, 3.0% of other errors are semantic-then-phonological, and 3.8% of
semantic errors are semantic-then-semantic. Because these error types are defined in terms the
derivation of a semantic representation that differs from both the stimulus and responsg, it is
difficult to apply them to the reading responses of patients. In fact, many of them (e.g. visual-then-
phonological, semanti c-then-semantic) cannot be distinguished from moresimpleerrorsonthebasis
of the stimulus and response aone. It might be possible to use detailed tests of comprehension to
determinewhen a patient derives semanticsthat are different from both the stimulus and response—
the model predicts that this should occur occasionally, although rarely.
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Figure 4.24: Rates of each error type across lesion severities for 0=1I lesionsinthe — ~——
network, using the response criteriaand the nol P output network.

4.9 Effectsof lesion severity on error type

To this point, al of the data we have presented on the relationship between types of errors have
averaged over a range of lesion severities, typically over those producing correct performance
between 20-80%. However, it is possible that the distribution of error types changes with lesion
severity. In addition, the extent of this effect may be influenced by the nature of the output system
employed. Rather than address these issues for al of the network architectures, we present data
fromonly the = ——_ network. Similar results obtain for the other networks.

Figure4.24 presentstheratesof each typeof error asafunction of lesion severity for 0=I lesions
inthe™ ~—— network, us ng both the response criteriaand the nol P output network. The plots
are somewhat difficult to interpret due to the variability of the data—however, a number of overall
effects are present. The first most obvious effect is that error rates increase with lesion severity.
Our main motivation for averaging only over lesions producing 20-80% correct performance in
previously reported results is that otherwise the results would be dominated by effects from the
most severe lesions, which often do not show the typical distribution of error types. It is aso
the case that the correct performance of most of the patients we are considering falls within this
range. The most interesting effect isthat the rates of visual and other errorsrise more quickly with
increasing lesion severity than the rates of semantic and mixed visual-and-semantic errors.

Figure 4.25 shows the same data replotted in terms of the proportion of each error type as a
function of incorrect performance.’! The proportion of error responses that are unrelated to the

Yncorrect rather than correct performance is used in order to correspond more directly with lesion severity, with
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Figure 4.25: Proportions of each error type as afunction of incorrect performancefor 0=-I lesions
inthe ™ " network, usi ng the response criteria and the nol P output network.

stimulus increases steadily as performance gets worse. The proportions of the remaining error
types all decrease at about the same rate, both when using the response criteriaand the nol P output
network. Thus for the moderate lesions we consider the relative proportions of the various error
types do not change drastically with lesion severity, and so our decision to average over lesions
producing moderate correct performance appears warranted.

4,10 Error patternsfor individual lesions

Our procedure for lesioning a set of connections involves randomly selecting some proportion of
the connections and removing them from the network. In order to ensure that the ensuing effects
are not peculiar to the particular connections removed, we carry out 20 instances of each type of
lesion and average the results across them. On the other hand, it must be kept in mind that the
model is compared with individual patients, each of whom have a particular lesion. In a sense,
for a given smulation experiment with four locations of nine severities of lesion, we are creating
720 simulated patients, with a relatively high proportion of them displaying the characteristics
of deep dydexia. However, there are some issues in deep dydexia, involving the relationship of
performance on individual words for the same lesion, that to this point we have been unable to
address.

good performance on the left and poor performance on theright.
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One issue concerns the correct performance on words that are given as responses in errors.
Some theories of reading errorsin deep dysexia (e.g. Morton & Patterson, 1980) assume that a
word producesan error whenitslexical entry ismissing from somelexicon, with aclosely-matching
word whose lexical entry is present being given as the response. If we aso assume that words are
read correctly when their entries are present in the lexicon, such atheory predicts that words given
as responses in errors should always be read correctly.

In fact, patients usually, but not always, adhere to this pattern. For example, D.E. read SWEAR
as“curse” but then gave the response “1 don’t know” to CURSE as stimulus (K. Patterson, personal
communication). G.R. gave no response to SHORT or GOOD, but produced the errors LITTLE =
“ghort” and BRIGHT = “good”, aswell astheerrorsBLUE = “green” and GREEN = “peas’ (Barry &
Richardson, 1988). Infact, at another time G.R. read correctly only 54% of words he had previously
given as responses in semantic errors—just dightly better than his original correct performance of
45% (Marshall & Newcombe, 1966).

If we examine the pattern of correct and incorrect performance for individual lesions of the
~— " network when using the response criteria, we find that only 64.1% of the words given
as the response in an error are read correctly. 31.2% of error responses produce an omission
while 4.6% lead to another error. Separating errors by type, the responses in mixed visual-and-
semantic errors are most likely to be read correctly (74.2%), followed by visual errors (70.9%)
and semantic errors (63.0%), while responses in “other” errors are least likely (48.1%). The high
rate of omissions may simply be due to our stringent criteria for overt responses. However, the
fact that 4.6% of error responses produce other errors when presented as stimuli clearly violates
the prediction of atheory that explains errorsin terms of missing lexical entries. In the damaged
network, the attractor for aword is not either present or absent, but rather can effectively operate
to produce a response given some inputs but not others.

It ispossiblefor an even more perplexing relationship to hold among thewords producing errors
inapatient. It hasbeen observed that apair of wordsmay produce each other aserror responses. For
example, G.R. produced THUNDER =- “storm” and STORM = “thunder” (Marshall & Newcombe,
1966), while D.E. produced ANSWER = “ask” and ASKED = “answer” (K. Patterson, personal
communication). It is hard to imagine how a mechanism that maps letter stringsto pronunciations
viameaning might possibly produce such behavior under damage.

Such response reversals occur in our simulations, but they are very rare. None are found in the
corpus of errorsproduced by the ™ ~“—— network. However, boththe == and ——T
networks produce afew of them when using the response criteria. For example, a0=-1(0.1) lesion
to the “# = network resulted in the visual errors MAT = “mud” and MUD = “mat”, while a
0=1(0.7) lesion produced the visual errors MUG = “nut” and NUT = “mug”. Similarly in the
—— T network, a0=I(0.3) produced the “other” errorsMuG = “hock” and HOCK =- “mug”,
while a 0=-1(0.7) lesion produced the mixed visual-and-semantic errors HIP = “lip” and LIP =
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“hip”.

How might a network produce such response reversals? Recalling Figure 2.10 (p. 43), we can
interpret damage to the direct pathway as corrupting the initial pattern of semantic activity derived
from orthography. One explanation for the existence of response reversalsis that the attractorsfor
words are sensitive to different aspects of this pattern. For example, suppose that the attractor for
HIP depends on some particular set of initial semantic features to distinguish it from LiP, but the
attractor for LIP depends on a different set to distinguish it from Hip (this cannot be represented in
a two-dimensiona rendition of semantic feature space like that in Figure 2.10). If both of these
sets of features are lost due to a particular lesion, the errors HIP = “lip” and LIP = “hip” are
both possible. In essence, an explanation for response reversals must allow a more complicated
interaction between orthographic and semantic information than is typically provided in theories
based on discrete lexical entriesfor words.

411 Summary

An examination of the effects of lesions on five alternative architectures for mapping orthography
to semantics has served both to demonstrate the generality of the basic H& S results as well as
to clarify the influences of aspects of network architecture on the detailed pattern of errors. A
consideration of more specific effects at the level of individual lesions, error types, and words
reinforced the correspondence of network and patient behavior.

Perhaps the most genera principle to emerge from these experiments is the importance of
the nature of the attractors developed by the network. Although network architecture can have a
strong influence on this process, ultimately it is the learning procedure which derives the actual
connection weights that implement the attractors. Thus it is important that we evaluate whether
the nature of the attractors, and hence the behavior they exhibit under damage, are the result of
specific characteristics of the back-propagation learning procedure, or whether the results would
generalize to other types of attractor networks. The next chapter addresses thisissue by attempting
to replicate and extend the results obtained thus far using a deterministic Boltzmann Machine and
aclosdy-related stochastic GRAIN network.
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