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Abstract. A simple linear neuron model with constrained Hebbian-type synaptic 
modification is analyzed and a new class of unconstrained learning rules is 
derived. It is shown that the model neuron tends to extract the principal 
component from a stationary input vector sequence. 
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1. Introduction 

In neuron models of the last decades since the work of McCulloch and Pitts (1943), 
many roles have been assigned to individual neurons from computational machines 
to analog signal processors. In many recent models, the feature detecting function 
has been emphasized (Cooper et al., 1979; v o n d e r  Malsburg, 1973; Nass and 
Cooper, 1973; Perez et al., 1975; Takeuchi and Amari, 1979). Most of these works 
are strongly based on computer simulations. The present correspondence points 
out a mathematical finding related to the feature detecting role of model neurons : a 
new synaptic modification law, derived as a limit process from an earlier well- 
known formulation of  the Hebbian-type modification, leads to a behaviour where 
the unit is able to extract from its input the statistically most significant factor. The 
behaviour is in close correspondence with a statistical technique known as principal 
component analysis or Karhunen-Lo6ve feature extraction. 

The neuron model considered here is as follows. The neuron receives a set of n 
scalar-valued inputs ~1,--. ,  4, (which may be assumed to represent firing frequen- 
cies in presynaptic fibers; in some models, the zero level is defined so that negative 
values for the effective inputs become possible) through n synaptic junctions with 
coupling strengths #1 . . . .  , #,. The unit sends out an efferent signal r/. According to 
many models of neural networks, the input-output relationship is linearized to read 

= ~ t,d,. (1) 
i=1 

In most recent models, the junction strengths #i have been assumed variable in time 
according to some version of the Hebbian hypothesis: the efficacies grow stronger 
when both the pre- and postsynaptic signals are strong. (For a discussion of the 
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linear law (1) as well as the synaptic modification, see Kohonen et al. (1981).) 
However, as the basic Hebbian scheme would lead to unrealistic growth of  the 
efficacies, a saturation or normalization has usually been assumed. This leads 
typically to the following type of "learning equation": 

~,(t) + 7,(t)~i(t) 
#i(t + 1) - { ~ : ~  [g,(t) + 7r/(t)~(t)]2} ~/2' (2) 

where ~ is a positive scalar. 
The form of the denominator is due to the use of Euclidean vector norm. Now 

the sum of the squares of ~(t)  remains equal to one. This particular form of 
normalization is very convenient from a mathematical point of view. The actual 
physiological reason for a normalization would be the competition of the synapses 
of a given neuron over some limited resource factors that are essential in efficacy 
growth (e.g., number of receptor molecules, surface area of the postsynaptic 
membrane, or energy resources). It should be realized that the synaptic efficacies 
#~(t) need not be linearly related to such resource factors and thus in the 
denominator of Eq. (2) there is no reason to prefer e.g. the linear sum to some other 
form like the one suggested there. In Sec. 4, a mathematical analysis is made of a 
more general class of learning equations with normalization, of which (2) is an 
example. 

In the following we show that both Eq. (2) and another learning scheme, 
derivable from it by a limit process but also plausible in physiological terms, 
produces a very specific type of behaviour for the model neuron: if the input vectors 
[3~ (t) . . . .  , ~,(t)] T for t = 1 ,2 , . . .  are regarded as a vector-valued stochastic process, 
then the neural unit tends to become a principal component analyzer for the input 
process. 

2. A New Law of Synaptic Modification 

Assume that the gain or plasticity coefficient 7 is small.Then (2) can be expanded as 
a power series in t' (for details, see Sec. 4), yielding 

/~,(t + 1) = #i(t) + yfl(t)[~,(t) - rf(t)#i(t)] + 0(?2). (3) 

Neglecting the O('~ 2) term, proportional to the second and higher powers of y, we 
have obtained a new interesting learning scheme. On the right hand side of (3), 
7rl(t)~(t) represents the usual "Hebbian" increment. However, with the extra term, 
the increment/~i(t + 1) - /~ ( t )  becomes now 7rl(t)~'i(t), with ~'i(t) = ~i(t) - q(t)#i(t) 
the effective input to the unit. Each junction strength/~(t) tends to grow according 
to its afferent ~(t), but the growth is controlled by an internal feedback in the 
neuron, - tl(t)gi(t ). This term is related to the "forgetting" or leakage terms often 
used in learning rules, with a difference that the leakage becomes stronger with 
stronger response t/(t). In view of some neurobiological models of synaptic growth, 
in which the efficacy of a synapse is explained in terms of postsynaptic factors, e.g. 
relative amounts of receptor molecules at postsynaptic sites (Stent, 1973), this kind 
of control factor may not be unrealistic. 
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An interesting thing about (3) is that due to this control factor, y,~: ~ # i ( t )  2 tends 
to be bounded and close to one even though no explicit normalization appears in 
the equation. Note that the right hand side depends on the other #j(t), j ~ i, only 
through the common response r/(t), if the term 0(72) is neglected. 

3. Asymptotic Analysis 

We introduce vector notation by writing re ( t )=  [ # 1 ( 0  . . . .  ,#n(t)J r and x ( t ) =  
[~l ( t ) , . . . ,  ~,(t)] r, whereby m(t) and x(t) are time-dependent n-dimensional real 
column vectors. Both are assumed to be stochastic. Now (1) reads 

q(t) = m(t)rx( t )  (4) 

while (2) reads 

m(t + 1) = [m(t) + 7~(t)x(t)]/llm(t) + 7~(t)x(t)ll (5) 

and (3) becomes 

m(t + 1) = re(t) + 7~l(t)Ex(t) - tl(t)m(t)] + 0(72) 

= m(t)  + 7[x(t)x( t )rm(t)  - m(t )rx( t )x( t )rm(t )m(t )]  + 0(72). (6) 

If x(t) and m(t) are statistically independent, (6) can be averaged to read 

E{m(t  + 1)lm(/)} --- m(t) + 7[Cm(t) - (m(t)rCm(t))rn(t)] + 0(72) (7) 

with C = E{x(t)x( t )r} .  
Recent techniques of stochastic approximation theory are available for 

analyzing learning equations of the type given here (see Ljung, 1977 and Kushner 
and Clark, 1978). Without going rigorously into the details, it can be shown that if 
the distribution of x(t) satisfies some not unrealistic assumptions and the gain 7 is 
not constant but allowed to decrease to zero in a special way (e.g., proportionally to 
l/t), then both (5) and (6) can be approximated by a differential equation 

d 
~ z ( t )  = Cz(O - ( z ( t )~Cz( t ) ) z ( t )  (8) 

which is the continuous-time counterpart of (7). The approximation is in the sense 
that the asymptotic paths of Eq. (8) and the stochastic equations (5) and (6) are 
close with a large probability and eventually the solution m(t) of (5) and (6) tends 
(with probability one) to a uniformly asymptotically stable solution of (8) (see e.g. 
Theorem 2.3.1 of Kushner and Clark, 1978). 

Of course, Eq. (8) might also be taken as the synaptic learning equation directly, 
with z(t) = [#1(t) , . . . ,  #,(t)] T, if a continuous-time framework is used from the 
start. This contains the assumption that synaptic modification is slow compared to 
statistical variations in the input data in order to warrant the use of E{x(t)x( t)  ~} 
in (8). 

A similar algorithm, arising in the context of digital signal processing and 
numerical methods of mathematical statistics, has been analyzed in detail elsewhere 
by Oja and Karhunen (1981). The following can be proven: 
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Theorem. In (8), let C be positive semidefinite with the largest eigenvalue o f  
multiplicity one, and let e be the corresponding normalized eigenvector (either o f  the 
two possible choices). Then ifz(0)rc > 0 ( < 0), z(t) tends to c ( -  c) as t --* co. The 
points c and - c are uniformly asymptotically (exponentially) stable. 

Proof. The uniform asymptotic stability is a direct consequence of standard results 
(see Theorem 2.4 of Hale, 1969). The domains of attraction of the stable points can 
be determined by expanding z(t) in terms of eigenvectors of C, 

n 

z(t) = ~ ~i(t)ci, with cl = c, 
i = 1  

by defining O~(t) = ~i(t)/~(t) and by deriving the linear differential equation 

O~(t) = ( , ~ -  ,~)o~(t) 

with 2~ and )~ eigenvalues of C. A detailed proof is provided in Oja and Karhunen 
(1981). 

Even when ~/does not tend to zero as time grows but remains small, Eq. (8) is a 
good approximation to the averaged equation (7). We can conclude that, neglecting 
statistical fluctuations, the synaptic vector m(t) of either (5) or (6) will tend to the 
dominant eigenvector c of input correlation matrix C. In statistical literature, the 
normalized linear combination of the data components having maximum variance 
is called the principal component of the data (Anderson, 1958). For zero-mean 
data, the principal component is exactly crx ,  or the response of the model neuron 
after convergence. Even for nonzero means for the components of x(t), this linear 
combination has the largest quadratic mean, since E{t/(t) 2} = E{(m(t)rx( t ) )  2} 
= m(t )rCm(t )  is maximized when m(t) = c. So the magnitude of the response r/(t) 
tends to be maximal on the average when the input vector belongs to the same 
statistical sample as the input vectors occurring during the training. 

This becomes especially clear if we assume that for all t, x(t) = x + v(t) where x 
is a fixed unit vector and v(t) is symmetrically distributed zero-mean noise. Then 
C = x x  r + E{vv r} = x x  r + a2Iwith a2 the variance of the components ofv(t). The 
largest eigenvalue of C is 1 + {r 2 and the corresponding eigenvector is c = x. The 
model neuron then becomes a matched f i l ter  for the data, since lim,~oo z(t) = x 
in (8). 

4. A General Approach to Analyzing Learning Rules with Constraints 

The analysis presented above is a special case of an approach that may have wider 
applicability. Assume that the junction strength #i(t) varies according to 

f~,(t + 1) 
#i(t + 1) = (9) 

cOE~l(t + 1 ) , . . . , ~ , ( t  + 1)] 

with 

/~i(t + 1) = #i(t) + 7(P[#i(t), ~,(t), rl(t)3. (10) 

There 9[ '3  is the basic increment at step t; however, the new values fii(t + 1) must 
be normalized according to some constraint function ~o[-] to obtain the #~(t + 1). 
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Eq. (2) was a special case with 

~oE~i(t), ~i(t) ,  ~ ( t ) ]  = ~i(t)~(t), (11) 

co[/~l(t + 1) . . . .  , fi,(t + 1)] = /~(t + 1) 2 (12) 

N ow the co function satisfies 

co[6~(t + 1 ) , . . . , @ , ( t  + 1)] = 6co[~l(t + 1) , . . . , /~ , ( t  + 1)] 

for  any scalar 6. (13) 

Let us assume that (13) holds in general for  co. Obviously it is true for any function 
of  the form [ ~ i ( t  + 1)P] 1/p 

Eqs. (9) and (10) may  be difficult to analyze due to the normalizat ion.  For  small 
gain factor  7, an equivalent form is again obtained, which would easily result in a 
limiting differential equation. Observe first that, f rom (9) and (13), 

c o ( ~ ' " "  '~") = co co (~ l~ .  ,~,) co(m,. . .  ,~~ 

1 
- c o ( / ~ , . . .  , / ~ , ) =  1 (14)  

co(~l, . . . ,  ~,) 

which holds for  all t. This is the explicit constraint  on the junct ion strengths #/(t). 
Then we obtain 

co[pl(t + 1) , . . . , /~ , ( t  + 1)] 

= co[#~(t) + 7~o(m(t), ~l(t), ~(t)) , . . . ,  re(t) + 7~o(#,(t), ~,(t), ~(t))] 

0co 
= co[#~(t),..., ~,(t)] + 7 ~  ,=o + 0(72) 

~?co 

= 1 + 7 ~ -  7 , = o  + ~  

and (9) yields for  7 small 

~co ~=o #~(t + 1) = / ~ ( t  + 1) - 7/~(t + 1)~-? + 0(72) 

~?co 
- + o ( 7 ~ ) .  (15 )  - I~i(t) + 79[#~(t), ~,(t), r/(t)] - 7 g i ( t ) ~  

~=0 

This is the desired approximat ive form. The first two terms on the right are exactly 
the same as the right hand side of  (10), and the third term reflects the effect of  
normalizat ion.  
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In the example (11) and (12), 

"}1/2 I 

n 

= Z t~i(t)~i(t)rl(t) = r/(t) 2, 
i = 1  

resulting in (3). 

5. Discussion 

The simple neuron model was considered above without any reference to its role in a 
nervous system. When a neural network is composed of such units, there will by 
necessity be lateral connections between the units. These were not included in the 
above analysis. In many model studies using related elements, inhibitory lateral 
connections have been assumed (Cooper et al., 1979; vonder Malsburg, 1973; Nass 
and Cooper, 1975; Perez et al., 1975; Takeuchi and Amari, 1979) which have an 
effect of enhancing selectivity to the incoming patterns. Recently, Kohonen (1982) 
has introduced a model with an array of interconnected elements having some of 
the properties of the present model. He has shown how self-organization is possible 
in such a network, with the result that topological properties of the input space are 
inherited by the response distribution of the neural elements. 
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